scholarly journals The Arabidopsis JMJ29 Protein Controls Circadian Oscillation through Diurnal Histone Demethylation at the CCA1 and PRR9 Loci

Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 529
Author(s):  
Hong Gil Lee ◽  
Pil Joon Seo

The circadian clock matches various biological processes to diurnal environmental cycles, such as light and temperature. Accumulating evidence shows that chromatin modification is crucial for robust circadian oscillation in plants, although chromatin modifiers involved in regulating core clock gene expression have been limitedly investigated. Here, we report that the Jumonji C domain-containing histone demethylase JMJ29, which belongs to the JHDM2/KDM3 group, shapes rhythmic changes in H3K4me3 histone marks at core clock loci in Arabidopsis. The evening-expressed JMJ29 protein interacts with the Evening Complex (EC) component EARLY FLOWERING 3 (ELF3). The EC recruits JMJ29 to the CCA1 and PRR9 promoters to catalyze the H3K4me3 demethylation at the cognate loci, maintaining a low-level expression during the evening time. Together, our findings demonstrate that interaction of circadian components with chromatin-related proteins underlies diurnal fluctuation of chromatin structures to maintain circadian waveforms in plants.

2019 ◽  
Vol 508 (3) ◽  
pp. 871-876 ◽  
Author(s):  
Patrick G. Saracino ◽  
Michael L. Rossetti ◽  
Jennifer L. Steiner ◽  
Bradley S. Gordon

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Leonidas S. Lundell ◽  
Evelyn B. Parr ◽  
Brooke L. Devlin ◽  
Lars R. Ingerslev ◽  
Ali Altıntaş ◽  
...  

Abstract Time-restricted feeding (TRF) improves metabolism independent of dietary macronutrient composition or energy restriction. To elucidate mechanisms underpinning the effects of short-term TRF, we investigated skeletal muscle and serum metabolic and transcriptomic profiles from 11 men with overweight/obesity after TRF (8 h day−1) and extended feeding (EXF, 15 h day−1) in a randomised cross-over design (trial registration: ACTRN12617000165381). Here we show that muscle core clock gene expression was similar after both interventions. TRF increases the amplitude of oscillating muscle transcripts, but not muscle or serum metabolites. In muscle, TRF induces rhythmicity of several amino acid transporter genes and metabolites. In serum, lipids are the largest class of periodic metabolites, while the majority of phase-shifted metabolites are amino acid related. In conclusion, short-term TRF in overweight men affects the rhythmicity of serum and muscle metabolites and regulates the rhythmicity of genes controlling amino acid transport, without perturbing core clock gene expression.


2012 ◽  
Vol 302 (3) ◽  
pp. H621-H633 ◽  
Author(s):  
Wen Su ◽  
Zhongwen Xie ◽  
Zhenheng Guo ◽  
Marilyn J. Duncan ◽  
Jenny Lutshumba ◽  
...  

This study was designed to determine whether the 24-h rhythms of clock gene expression and vascular smooth muscle (VSM) contractile responses are altered in type 2 diabetic db/db mice. Control and db/db mice were euthanized at 6-h intervals throughout the day. The aorta, mesenteric arteries, heart, kidney, and brain were isolated. Clock and target gene mRNA levels were determined by either real-time PCR or in situ hybridization. Isometric contractions were measured in isolated aortic helical strips, and pressor responses to an intravenous injection of vasoconstrictors were determined in vivo using radiotelemetry. We found that the 24-h mRNA rhythms of the following genes were suppressed in db/db mice compared with control mice: the clock genes period homolog 1/2 ( Per1/2) and cryptochrome 1/2 ( Cry1/2) and their target genes D site albumin promoter-binding protein ( Dbp) and peroxisome proliferator-activated receptor-γ ( Pparg) in the aorta and mesenteric arteries; Dbp in the heart; Per1, nuclear receptor subfamily 1, group D, member 1 ( Rev-erba), and Dbp in the kidney; and Per1 in the suprachiasmatic nucleus. The 24-h contractile variations in response to phenylephrine (α1-agonist), ANG II, and high K+ were significantly altered in the aortas from db/db mice compared with control mice. The diurnal variations of the in vivo pressor responses to phenylephrine and ANG II were lost in db/db mice. Moreover, the 24-h mRNA rhythms of the contraction-related proteins Rho kinase 1/2, PKC-potentiated phosphatase inhibitory protein of 17 kDa, calponin-3, tropomyosin-1/2, and smooth muscle protein 22-α were suppressed in db/db mice compared with control mice. Together, our data demonstrated that the 24-h rhythms of clock gene mRNA, mRNA levels of several contraction-related proteins, and VSM contraction were disrupted in db/db mice, which may contribute to the disruption of their blood pressure circadian rhythm.


Diabetologia ◽  
2017 ◽  
Vol 60 (10) ◽  
pp. 2011-2020 ◽  
Author(s):  
Cécile Jacovetti ◽  
Adriana Rodriguez-Trejo ◽  
Claudiane Guay ◽  
Jonathan Sobel ◽  
Sonia Gattesco ◽  
...  

2006 ◽  
Vol 20 (3) ◽  
pp. 573-583 ◽  
Author(s):  
Satoru Koyanagi ◽  
Sumako Okazawa ◽  
Yukako Kuramoto ◽  
Kentarou Ushijima ◽  
Hiroshi Shimeno ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
pp. e000876
Author(s):  
Alireza Basti ◽  
Müge Yalçin ◽  
David Herms ◽  
Janina Hesse ◽  
Ouda Aboumanify ◽  
...  

ObjectivesIn this study, we investigated daily fluctuations in molecular (gene expression) and physiological (biomechanical muscle properties) features in human peripheral cells and their correlation with exercise performance.Methods21 healthy participants (13 men and 8 women) took part in three test series: for the molecular analysis, 15 participants provided hair, blood or saliva time-course sampling for the rhythmicity analysis of core-clock gene expression via RT-PCR. For the exercise tests, 16 participants conducted strength and endurance exercises at different times of the day (9h, 12h, 15h and 18h). Myotonometry was carried out using a digital palpation device (MyotonPRO), five muscles were measured in 11 participants. A computational analysis was performed to relate core-clock gene expression, resting muscle tone and exercise performance.ResultsCore-clock genes show daily fluctuations in expression in all biological samples tested for all participants. Exercise performance peaks in the late afternoon (15–18 hours for both men and women) and shows variations in performance, depending on the type of exercise (eg, strength vs endurance). Muscle tone varies across the day and higher muscle tone correlates with better performance. Molecular daily profiles correlate with daily variation in exercise performance.ConclusionTraining programmes can profit from these findings to increase efficiency and fine-tune timing of training sessions based on the individual molecular data. Our results can benefit both professional athletes, where a fraction of seconds may allow for a gold medal, and rehabilitation in clinical settings to increase therapy efficacy and reduce recovery times.


2017 ◽  
Vol 28 (17) ◽  
pp. 2333-2342 ◽  
Author(s):  
Isao T. Tokuda ◽  
Akihiko Okamoto ◽  
Ritsuko Matsumura ◽  
Toru Takumi ◽  
Makoto Akashi

Limit-cycle oscillations require the presence of nonlinear processes. Although mathematical studies have long suggested that multiple nonlinear processes are required for autonomous circadian oscillation in clock gene expression, the underlying mechanism remains controversial. Here we show experimentally that cell-autonomous circadian transcription of a mammalian clock gene requires a functionally interdependent tandem E-box motif; the lack of either of the two E-boxes results in arrhythmic transcription. Although previous studies indicated the role of the tandem motifs in increasing circadian amplitude, enhancing amplitude does not explain the mechanism for limit-cycle oscillations in transcription. In this study, mathematical analysis suggests that the interdependent behavior of enhancer elements including not only E-boxes but also ROR response elements might contribute to limit-cycle oscillations by increasing transcriptional nonlinearity. As expected, introduction of the interdependence of circadian enhancer elements into mathematical models resulted in autonomous transcriptional oscillation with low Hill coefficients. Together these findings suggest that interdependent tandem enhancer motifs on multiple clock genes might cooperatively enhance nonlinearity in the whole circadian feedback system, which would lead to limit-cycle oscillations in clock gene expression.


Sign in / Sign up

Export Citation Format

Share Document