scholarly journals Diurnal variations in the expression of core-clock genes correlate with resting muscle properties and predict fluctuations in exercise performance across the day

2021 ◽  
Vol 7 (1) ◽  
pp. e000876
Author(s):  
Alireza Basti ◽  
Müge Yalçin ◽  
David Herms ◽  
Janina Hesse ◽  
Ouda Aboumanify ◽  
...  

ObjectivesIn this study, we investigated daily fluctuations in molecular (gene expression) and physiological (biomechanical muscle properties) features in human peripheral cells and their correlation with exercise performance.Methods21 healthy participants (13 men and 8 women) took part in three test series: for the molecular analysis, 15 participants provided hair, blood or saliva time-course sampling for the rhythmicity analysis of core-clock gene expression via RT-PCR. For the exercise tests, 16 participants conducted strength and endurance exercises at different times of the day (9h, 12h, 15h and 18h). Myotonometry was carried out using a digital palpation device (MyotonPRO), five muscles were measured in 11 participants. A computational analysis was performed to relate core-clock gene expression, resting muscle tone and exercise performance.ResultsCore-clock genes show daily fluctuations in expression in all biological samples tested for all participants. Exercise performance peaks in the late afternoon (15–18 hours for both men and women) and shows variations in performance, depending on the type of exercise (eg, strength vs endurance). Muscle tone varies across the day and higher muscle tone correlates with better performance. Molecular daily profiles correlate with daily variation in exercise performance.ConclusionTraining programmes can profit from these findings to increase efficiency and fine-tune timing of training sessions based on the individual molecular data. Our results can benefit both professional athletes, where a fraction of seconds may allow for a gold medal, and rehabilitation in clinical settings to increase therapy efficacy and reduce recovery times.


2019 ◽  
Vol 508 (3) ◽  
pp. 871-876 ◽  
Author(s):  
Patrick G. Saracino ◽  
Michael L. Rossetti ◽  
Jennifer L. Steiner ◽  
Bradley S. Gordon


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Leonidas S. Lundell ◽  
Evelyn B. Parr ◽  
Brooke L. Devlin ◽  
Lars R. Ingerslev ◽  
Ali Altıntaş ◽  
...  

Abstract Time-restricted feeding (TRF) improves metabolism independent of dietary macronutrient composition or energy restriction. To elucidate mechanisms underpinning the effects of short-term TRF, we investigated skeletal muscle and serum metabolic and transcriptomic profiles from 11 men with overweight/obesity after TRF (8 h day−1) and extended feeding (EXF, 15 h day−1) in a randomised cross-over design (trial registration: ACTRN12617000165381). Here we show that muscle core clock gene expression was similar after both interventions. TRF increases the amplitude of oscillating muscle transcripts, but not muscle or serum metabolites. In muscle, TRF induces rhythmicity of several amino acid transporter genes and metabolites. In serum, lipids are the largest class of periodic metabolites, while the majority of phase-shifted metabolites are amino acid related. In conclusion, short-term TRF in overweight men affects the rhythmicity of serum and muscle metabolites and regulates the rhythmicity of genes controlling amino acid transport, without perturbing core clock gene expression.



2019 ◽  
Vol 51 (3) ◽  
pp. 77-82 ◽  
Author(s):  
Muna T. Canales ◽  
Meaghan Holzworth ◽  
Shahab Bozorgmehri ◽  
Areef Ishani ◽  
I. David Weiner ◽  
...  

Clock gene dysregulation has been shown to underlie various sleep disorders and may lead to negative cardio-metabolic outcomes. However, the association between sleep apnea (SA) and core clock gene expression is unclear. We performed a cross-sectional analysis of 49 Veterans enrolled in a study of SA outcomes in veterans with chronic kidney disease, not selected for SA or sleep complaints. All participants underwent full polysomnography and next morning whole blood collection for clock gene expression. We defined SA as an apnea-hypopnea index ≥15 events/h; nocturnal hypoxemia(NH) was defined as ≥10% of total sleep time spent at <90% oxygen saturation. We used quantitative real-time PCR to compare the relative gene expression of clock genes between those with and without SA or NH. Clock genes studied were Bmal1, Ck1δ, Ck1ε, Clock, Cry1, Cry2, NPAS2, Per1, Per2, Per3, Rev-Erb-α, RORα, and Timeless. Our cohort was 90% male, mean age was 71 yr (SD 11), mean body mass index was 30 kg/m2 (SD 5); 41% had SA, and 27% had NH. Compared with those without SA, Per3 expression was reduced by 35% in SA ( P = 0.027). Compared with those without NH, NPAS2, Per1, and Rev-Erb-α expression was reduced in NH (50.4%, P = 0.027; 28.7%, P = 0.014; 31%, P = 0.040, respectively). There was no statistical difference in expression of the remaining clock genes by SA or NH status. Our findings suggest that SA or related NH and clock gene expression may be interrelated. Future study of 24 h clock gene expression in SA is needed to establish the role of clock gene regulation on the pathway between SA and cardio-metabolic outcomes.



2021 ◽  
Vol 15 (Supplement_1) ◽  
pp. S228-S228
Author(s):  
Y Weintraub ◽  
S Cohen ◽  
N Chapnik ◽  
A Anafy ◽  
A Yerushalmy-Feler ◽  
...  

Abstract Background Pathophysiological mechanisms active in inflammatory bowel disease (IBD), such as mucosal barrier repair, innate and adaptive immune responses, intestinal motility and gut microbiome, all exhibit diurnal variations. Chronic disruption of the molecular clock augment inflammatory response. We have shown that newly diagnosed, naïve to treatment, young IBD patients showed reduced clock gene expression in both inflamed and non-inflamed intestinal tissues and in peripheral White Blood Cells (WBC). This reduction correlated with disease activity. Our aim in this study was to determine whether certain clock genes correlate with disease activity scores or inflammatory markers in Crohn’s disease (CD) vs. ulcerative colitis (UC). Methods 17 patients with CD and 13 with UC, 8–22 years old, were recruited. Patients were evaluated upon diagnosis and during medical treatment. Disease activity scores, C-reactive protein (CRP) and fecal calprotectin (Fcal) levels were measured and WBC were analysed for clock gene (CLOCK, BMAL1, CRY1, CRY2, PER1 and PER2) expression. Clock gene expression levels were correlated to disease activity scores (clinically active vs. remission), CRP levels (&lt;5 mg/l vs. &gt;5 mg/l) and Fcal levels (&lt; 250 μg/mg vs. &gt;250 μg/mg) in CD (21 samples) and UC (20 samples). Results In UC, BMAL (p&lt;0.008), CLOCK (p&lt;0.02), CRY1 (p&lt;0.002), CRY2 (p&lt;0.0009), PER1 (p&lt;0.003) and PER2 (p&lt;0.003) showed decreased expression when Fcal levels were &gt; 250 μg/mg. When compared with the clinical status and CRP levels, only BMAL1 showed reduced expression (p&lt;0.003 and p&lt;0.001, respectively). In CD, clinical status correlated with clock gene expression: CLOCK (p&lt;0.035), PER1 (p&lt;0.001) and CRY1 (p&lt;0.028) were reduced in active disease. CRP and Fcal did not correlate with clock gene expression. Conclusion Altered levels of certain clock genes were demonstrated in young CD and UC patients in exacerbation vs. remission. In UC, Fcal levels inversely correlated with all major circadian genes and partially with clinical status and CRP levels. In CD patients clock gene expression inversely correlated with clinical status.



2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A66-A67
Author(s):  
Audrey L Earnhardt ◽  
David G Riley ◽  
Noushin Ghaffari ◽  
Penny K Riggs ◽  
Charles R Long ◽  
...  

Abstract The primary objective of this investigation was to determine whether circadian clock genes were differentially expressed within or among bovine hypothalamic paraventricular nucleus (PVN), anterior pituitary gland (AP), adrenocortical (AC) and adrenomedullary (AM) tissues. The PVN, AP, AC, and AM were isolated from 5-yr-old Brahman cows (n = 8) harvested humanely at an abattoir between 0800-1100 h. Expression of target genes in each sample was evaluated via RNA-sequencing analyses. Gene counts were normalized using the trimmed mean of M values (TMM) method in the edgeR Package from Bioconductor, R. The normalized gene counts of genes important for circadian rhythm were statistically analyzed using the GLM Procedure of SAS. The genes analyzed were circadian locomotor output cycles protein kaput (CLOCK), cryptochrome circadian regulator 1 and 2 (CRY1 and CRY2), aryl hydrocarbon receptor nuclear translocator like (ARNTL), period circadian regulator 1 and 2 (PER1 and PER2), neuronal PAS domain protein 2 (NPAS2), and nuclear receptor subfamily 1 group D member 1 (NR1D1). Overall, relative expression profiles of clock genes differed (P &lt; 0.01) within each tissue with PER1 having greater expression in all tissues (P &lt; 0.01). Within the PVN expression of CLOCK, CRY1, ARNTL, and PER2 was less than that of CRY2, NPAS2, and NR1D1 (P &lt; 0.01). In the AP, with the exception of PER1, no other clock gene differed in degree of expression. In the AC, expression of CLOCK and NPAS2 was greater than CRY1, ARNTL, PER2, and NR1D1 (P &lt; 0.05), whereas CRY2 expression exceeded only CRY1 (P &lt; 0.05). Within the AM, CLOCK and CRY2 expression was greater than CRY1 and ARNTL (P &lt; 0.05). Overall, clock gene expression among tissues differed (P &lt; 0.01) for each individual clock gene. The AC and AM had similar clock gene expression, except expression of CRY2 and PER2 was greater in AM (P &lt; 0.05). The AC and AM had greater expression of CLOCK than the PVN and AP (P &lt; 0.01), with PVN having greater expression than AP (P &lt; 0.01). The AP had greater expression of NPAS2, followed by PVN, with the least expression in the AC and AM (P &lt; 0.01). Both PVN and AP had greater CRY1 and NR1D1 expression than AC or AM (P &lt; 0.01). The AP had greater PER1 expression than PVN, AC, and AM (P &lt; 0.01), whereas PVN, AC, and AM had greater ARNTL expression than AP (P &lt; 0.05). Both AP and AM had greater expression of PER2 than PVN or AC (P &lt; 0.01). The PVN had greater expression of CRY2 than the AP, AC, and AM (P &lt; 0.01). These results indicated that within each tissue the various clock genes were expressed in different quantities. Also, the clock genes were expressed differentially among the tissues of the bovine neuroendocrine adrenal system. Temporal relationships of these genes with the primary endocrine products of these tissues should be investigated to define the roles of peripheral clock genes in regulation of metabolism and health.



2020 ◽  
Vol 287 (1933) ◽  
pp. 20201001
Author(s):  
Mickael Perrigault ◽  
Hector Andrade ◽  
Laure Bellec ◽  
Carl Ballantine ◽  
Lionel Camus ◽  
...  

Arctic regions are highly impacted by climate change and are characterized by drastic seasonal changes in light intensity and duration with extended periods of permanent light or darkness. Organisms use cyclic variations in light to synchronize daily and seasonal biological rhythms to anticipate cyclic variations in the environment, to control phenology and to maintain fitness. In this study, we investigated the diel biological rhythms of the Arctic scallop, Chlamys islandica , during the autumnal equinox and polar night. Putative circadian clock genes and putative light perception genes were identified in the Arctic scallop. Clock gene expression oscillated in the three tissues studied (gills, muscle, mantle edge). The oscillation of some genes in some tissues shifted from daily to tidal periodicity between the equinox and polar night periods and was associated with valve behaviour. These results are the first evidence of the persistence of clock gene expression oscillations during the polar night and might suggest that functional clockwork could entrain rhythmic behaviours in polar environments.



2018 ◽  
Vol 50 (5S) ◽  
pp. 793
Author(s):  
Karina Ando ◽  
Masaki Takahashi ◽  
Shigenobu Shibata ◽  
Hideyuki Takahashi


2020 ◽  
Vol 318 (1) ◽  
pp. E1-E10 ◽  
Author(s):  
Laura Sardon Puig ◽  
Nicolas J. Pillon ◽  
Erik Näslund ◽  
Anna Krook ◽  
Juleen R. Zierath

The molecular circadian clock plays a role in metabolic homeostasis. We tested the hypothesis obesity and systemic factors associated with insulin resistance affect skeletal muscle clock gene expression. We determined clock gene expression in skeletal muscle of obese women ( n = 5) and men ( n = 18) before and 6 mo after Roux-en-Y gastric bypass (RYGB) surgery and normal-weight controls (women n = 6, men n = 8). Skeletal muscle clock gene expression was affected by obesity and weight loss. CRY1 mRNA ( P = 0.05) was increased and DBP mRNA ( P < 0.05) was decreased in obese vs. normal weight women and restored to control levels after RYGB-induced weight loss. CLOCK, CRY1, CRY2, and DBP mRNA ( P < 0.05) was decreased in obese men compared with normal weight men. Expression of all other clock genes was unaltered by obesity or weight loss in both cohorts. We correlated clock gene expression with clinical characteristics of the participants. Among the genes studied, DBP and PER3 expression was inversely correlated with plasma lipids in both cohorts. Circadian time-course studies revealed that core clock genes oscillate over time ( P < 0.05), with BMAL1, CIART, CRY2, DBP, PER1, and PER3 expression profiles altered by palmitate treatment. In conclusion, skeletal muscle clock gene expression and function is altered by obesity, coincident with changes in plasma lipid levels. Palmitate exposure disrupts clock gene expression in myotubes, indicating that dyslipidemia directly alters the circadian program. Strategies to reduce lipid overload and prevent elevations in nonesterified fatty acid and cholesterol levels may sustain circadian clock signals in skeletal muscle.



Diabetologia ◽  
2017 ◽  
Vol 60 (10) ◽  
pp. 2011-2020 ◽  
Author(s):  
Cécile Jacovetti ◽  
Adriana Rodriguez-Trejo ◽  
Claudiane Guay ◽  
Jonathan Sobel ◽  
Sonia Gattesco ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document