scholarly journals Flow Cytometry-Based Determination of Ploidy from Dried Leaf Specimens in Genomically Complex Collections of the Tropical Forage Grass Urochloa s. l.

Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 957
Author(s):  
Paulina Tomaszewska ◽  
Till K. Pellny ◽  
Luis M. Hernández ◽  
Rowan A. C. Mitchell ◽  
Valheria Castiblanco ◽  
...  

Urochloa (including Brachiaria, Megathyrus and some Panicum) tropical grasses are native to Africa and are now, after selection and breeding, planted worldwide, particularly in South America, as important forages with huge potential for further sustainable improvement and conservation of grasslands. We aimed to develop an optimized approach to determine ploidy of germplasm collection of this tropical forage grass group using dried leaf material, including approaches to collect, dry and preserve plant samples for flow cytometry analysis. Our methods enable robust identification of ploidy levels (coefficient of variation of G0/G1 peaks, CV, typically <5%). Ploidy of some 348 forage grass accessions (ploidy range from 2x to 9x), from international genetic resource collections, showing variation in basic chromosome numbers and reproduction modes (apomixis and sexual), were determined using our defined standard protocol. Two major Urochloa agamic complexes are used in the current breeding programs at CIAT and EMBRAPA: the ’brizantha’ and ’humidicola’ agamic complexes are variable, with multiple ploidy levels. Some U. brizantha accessions have odd level of ploidy (5x), and the relative differences in fluorescence values of the peak positions between adjacent cytotypes is reduced, thus more precise examination of this species is required. Ploidy measurement of U. humidicola revealed aneuploidy.

2021 ◽  
Author(s):  
Paulina Tomaszewska ◽  
Till K. Pellny ◽  
Luis Miguel Hernandez ◽  
Rowan A. C. Mitchell ◽  
Valheria Castiblanco ◽  
...  

We aimed to develop an optimized approach to determine ploidy for dried leaf material in a germplasm collection of a tropical forage grass group, including approaches to collect, dry and preserve plant samples for flow cytometry analysis. Urochloa (including Brachiaria, Megathyrus and some Panicum) tropical grasses are native to Africa and are now, after selection and breeding, planted worldwide, particularly in South America, as important forages with huge potential for further sustainable improvement and conservation of grasslands. The methods enable robust identification of ploidy levels (coefficient of variation, CV, typically <5%). Ploidy of some 353 forage grass accessions (ploidy range from 2 to 9), from international genetic resource collections, showing variation in basic chromosome numbers and reproduction modes (apomixis and sexual), were determined using our defined standard protocol. Two major Urochloa agamic complexes used in the current breeding programs at CIAT and EMBRAPA: the ' brizantha' and 'humidicola' agamic complexes are variable, with multiple ploidy levels and DNA content. U. brizantha has odd level of ploidy (x=5), and the relative differences in nuclear DNA content between adjacent cytotypes is reduced, thus more precise examination of this species is required. Ploidy measurement of U. humidicola revealed some aneuploidy.


2011 ◽  
Vol 59 (3) ◽  
pp. 253 ◽  
Author(s):  
Mauro Meier ◽  
Diego Zappacosta ◽  
Juan Pablo Selva ◽  
Silvina Pessino ◽  
Viviana Echenique

Weeping lovegrass is a forage grass cultivated in semiarid regions of the world that reproduces mainly by apomixis (diplospory), a process that involves the formation of asexual seeds and bypasses the processes of meiosis and fertilisation. The aim of this work was to evaluate and compare different techniques (cytoembryology, callose deposition, flow cytometry and progeny tests) to determine the reproductive mode of weeping lovegrass. Typical sexual and apomictic processes were clearly differentiated using cytoembryology, and different callose deposition patterns were observed in sexual and apomictic genotypes. Previous studies indicated that presence of callose on the cell wall of the megaspore mother cell is associated only with sexual processes. Nevertheless, our results also found callose deposition in apomictic genotypes, although clearly different from the pattern found in sexual processes, allowing discrimination between sexual and apomictic plants. Flow cytometry seed screening using individual seeds did not differentiate between sexual and apomictic plants as the embryo : endosperm DNA content ratio was similar in sexual and apomictic plants. Progeny tests using molecular markers showed uniform patterns in offspring from apomictic plants and variable patterns among the progeny of sexual plants. The results obtained from cytological studies and progeny tests were similar, indicating that both methods provide useful tools for determination of reproductive mode. However, the callose test with aniline blue was faster and easier to use than other techniques.


10.5109/24253 ◽  
1998 ◽  
Vol 43 (1/2) ◽  
pp. 83-88
Author(s):  
Yukio Ozaki ◽  
Kumiko Narikiyo ◽  
Michikazu Hiramatsu ◽  
Kenji Ureshino ◽  
Hiroshi Okubo

2021 ◽  
Author(s):  
Sefa POLATÖZ ◽  
Murat Seker ◽  
Çağlar KAYA

Abstract In plants, knowing the ploidy level of plant material used in breeding studies, and especially for biotechnology applications, carries great importance. The presence of a rapid variety of dynamics in citrus fruits allows their use as rootstock and varieties ensuring adaptability to various climate and soil conditions with different breeding methods. A variety of appropriate rootstocks are used for commercial citrus species. This study investigated the genome sizes and ploidy levels in citrus rootstocks commonly used around the world with flow cytometry in seedling populations. The study used Gou-Tou, C-35, Troyer Citrange, Taiwanica, Citremon, Yuzu, Sunki mandarin, Flying Dragon, Yuma Citrange, Macrophylla and Chinese orange rootstocks. Fresh leaf tissues were mixed with the triploid Tahiti lime leaf tissue, used as standard species, and cell nuclei were isolated. Cells stained with propidium iodide were read with flow cytometry and histograms and cytograms were obtained. According to the obtained results, all seedlings of species had diploid genome volumes. In terms of genome volume, there were differences found between species. Yuzu seedlings were determined to be the species with largest genome volume (0.808 pg/2C), while Flying Dragon trifoliate had smallest genome volume (0.700 pg/2C).


2017 ◽  
Vol 74 (1) ◽  
pp. 052 ◽  
Author(s):  
David Ezquerro-López ◽  
David Kopecký ◽  
Luis Á. Inda

Festuca subgen. Schedonorus is a group of broad-leaved fescues, which can be divided into two clades: European and Maghrebian. We employed fluorescent in situ hybridization —FISH— with probes specific for 5S and 35S ribosomal DNA and genome size estimation using flow cytometry to shed light on the determination of possible parental genomes of polyploid species of the Maghrebian clade. Our results indicate that octoploid F. arundinacea subsp. atlantigena probably originated from crossing of the tetraploids F. arundinacea subsp. fenas —2n = 4x = 28— and F. mairei —2n = 4x = 28— followed by whole genome duplication. However, a large reconstruction of karyotype and genome downsizing has been revealed. Similarly, hexaploid F. arundinacea subsp. corsica presumably resulted from the interspecific hybridization of the diploid F. pratensis and tetraploid F. arundinacea subsp. fenas. Several scenarios on the origin of decaploid F. arundinacea var. letourneuxiana are discussed. This study contributed to our knowledge on the phylogeny of broad-leaved fescues and provided new information on the karyotypes —chromosome numbers, ploidy levels and numbers and positions of rDNA loci— using FISH and genome size estimations using flow cytometry in selected taxa of this important grass genus.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 773B-773
Author(s):  
Thomas Ranney* ◽  
Thomas Eaker

Information on ploidy levels is extremely valuable for use in plant breeding programs. Fertility, crossability, and heritability of traits are all influenced by ploidy levels. Knowledge of reproductive pathways, including occurrence of apomixes, pseudogamy, and formation of unreduced gametes can also be important information for developing breeding strategies. Although ploidy level can be determined by counting chromosomes, flow cytometry provides a reliable and much faster means for determination of nuclear DNA content and associated ploidy level. Measurement of ploidy levels of seeds (embryo and endosperm) can also provide useful insights into reproductive pathways. The objective of this study was to determine the approximate genome size, estimated ploidy level, and range of reproductive pathways of a diverse collection of flowering crapbapples (Malus spp.). Genome sizes were calculated as nuclear DNA content for unreduced tissue (2C). Results from the taxa included in our survey showed DNA contents ranging from 1.52 to 1.82 for diploids, 2.40 to 2.62 for triploids, and 3.36 to 3.74 pg/2C for tetraploids. Based on these ranges, we identified 43 diploid, 10 triploid, and 4 tetraploid crabapple taxa in this collection. Results from open pollinated seeds and seedlings demonstrated a variety of reproductive pathways including apomixes and unreduced gametes. This research provides information on ploidy levels and reproductive pathways of flowering crabapples and will allow for more systematic and efficient progress in the development of improved cultivars.


Author(s):  
Yinjie Qiu ◽  
Sierra Hamernick ◽  
Joan Barreto Ortiz ◽  
Eric Watkins

ABSTRACTFestuca ovina is a fine fescue that is used as a low-input turfgrass. The ploidy levels of F. ovina accessions held by the USDA National Plant Germplasm System (NPGS) are unknown, limiting the use of the germplasm in breeding programs. The objective of this study was to determine DNA content and estimate ploidy of these 127 accessions. Among the accessions, we identified a wide range of ploidy levels from diploid to octoploid. We also found the accessions with higher ploidy levels usually had larger seed size. These results will be informative to plant breeders and researchers using germplasm from the F. ovina collection and point to challenges in maintaining polyploid, outcrossing germplasm seed stocks in common nurseries.


Caryologia ◽  
2021 ◽  
Vol 74 (1) ◽  
pp. 109-116
Author(s):  
Fahimeh Fallah ◽  
Farrokh Ghahremaninejad

Genome size is a helpful tool for circumscribing taxa at diverse taxonomic degrees (mostly species) and resolving intricate low-level taxonomies. The correct genome size in Hedera (Araliaceae) has long been discussed, and the ploidy levels of some taxa are still unclear. Twelve accessions of Hedera were measured via flow cytometry. Flow cytometry is a relatively rapid, inexpensive, and credible tool. Fresh leaves of Hedera samples and internal reference standard parsley (Petroselinum crispum) were stained with propidium iodide (PI). Flow cytometry measurements showed that for the accessions of 2CV (3.09 - 6.40 pg), the lowest amount of nuclear DNA was 3.09 pg for Hedera crebrescens (So), while the highest amount was 6.40 pg for H. hibernica “Hamilton,” representing a statistically significant difference. According to this study, the new taxon (H. crebrescens) is a diploid, though this taxon was previously considered H. hibernica (tetraploid).


Sign in / Sign up

Export Citation Format

Share Document