scholarly journals A Comprehensive Study of the Genus Sanguisorba (Rosaceae) Based on the Floral Micromorphology, Palynology, and Plastome Analysis

Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1764
Author(s):  
Inkyu Park ◽  
Junho Song ◽  
Sungyu Yang ◽  
Goya Choi ◽  
Byeongcheol Moon

Sanguisorba, commonly known as burnet, is a genus in the family Rosaceae native to the temperate regions of the Northern hemisphere. Five of its thirty species are distributed in Korea: Sanguisorba officinalis, S. stipulata, S. hakusanensis, S. longifolia, and S. tenuifolia. S. officinalis has been designated as a medicinal remedy in the Chinese and Korean Herbal Pharmacopeias. Despite being a valuable medicinal resource, the morphological and genomic information, as well as the genetic characteristics of Sanguisorba, are still elusive. Therefore, we carried out the first comprehensive study on the floral micromorphology, palynology, and complete chloroplast (cp) genome of the Sanguisorba species. The outer sepal waxes and hypanthium characters showed diagnostic value, despite a similar floral micromorphology across different species. All the studied Sanguisorba pollen were small to medium, oblate to prolate-spheroidal, and their exine ornamentation was microechinate. The orbicules, which are possibly synapomorphic, were consistently absent in this genus. Additionally, the cp genomes of S. officinalis, S. stipulata, and S. hakusanensis have been completely sequenced. The comparative analysis of the reported Sanguisorba cp genomes revealed local divergence regions. The nucleotide diversity of trnH-psbA and rps2-rpoC2, referred to as hotspot regions, revealed the highest pi values in six Sanguisorba. The ndhG indicated positive selection pressures as a species-specific variation in S. filiformis. The S. stipulata and S. tenuifolia species had psbK genes at the selected pressures. We developed new DNA barcodes that distinguish the typical S. officinalis and S. officinalis var. longifolia, important herbal medicinal plants, from other similar Sanguisorba species with species-specific distinctive markers. The phylogenetic trees showed the positions of the reported Sanguisorba species; S. officinalis, S. tenuifolia, and S. stipulata showed the nearest genetic distance. The results of our comprehensive study on micromorphology, pollen chemistry, cp genome analysis, and the development of species identification markers can provide valuable information for future studies on S. officinalis, including those highlighting it as an important medicinal resource.

2010 ◽  
Vol 100 (5) ◽  
pp. 404-414 ◽  
Author(s):  
Youn-Sig Kwak ◽  
Peter A. H. M. Bakker ◽  
Debora C. M. Glandorf ◽  
Jennifer T. Rice ◽  
Timothy C. Paulitz ◽  
...  

Dark pigmented fungi of the Gaeumannomyces–Phialophora complex were isolated from the roots of wheat grown in fields in eastern Washington State. These fungi were identified as Phialophora spp. on the basis of morphological and genetic characteristics. The isolates produced lobed hyphopodia on wheat coleoptiles, phialides, and hyaline phialospores. Sequence comparison of internal transcribed spacer regions indicated that the Phialophora isolates were clearly separated from other Gaeumannomyces spp. Primers AV1 and AV3 amplified 1.3-kb portions of an avenacinase-like gene in the Phialophora isolates. Phylogenetic trees of the avenacinase-like gene in the Phialophora spp. also clearly separated them from other Gaeumannomyces spp. The Phialophora isolates were moderately virulent on wheat and barley and produced confined black lesions on the roots of wild oat and two oat cultivars. Among isolates tested for their sensitivity to 2,4-diacetylphloroglucinol (2,4-DAPG), the 90% effective dose values were 11.9 to 48.2 μg ml–1. A representative Phialophora isolate reduced the severity of take-all on wheat caused by two different isolates of Gaeumannomyces graminis var. tritici. To our knowledge, this study provides the first report of an avenacinase-like gene in Phialophora spp. and demonstrated that the fungus is significantly less sensitive to 2,4-DAPG than G. graminis var. tritici.


Author(s):  
O. Smutko ◽  
L. Radchenko ◽  
A. Mironenko

The aim of the present study was identifying of molecular and genetic changes in hemaglutinin (HA), neuraminidase (NA) and non-structure protein (NS1) genes of pandemic influenza A(H1N1)pdm09 strains, that circulated in Ukraine during 2015-2016 epidemic season. Samples (nasopharyngeal swabs from patients) were analyzed using real-time polymerase chain reaction (RTPCR). Phylogenetic trees were constructed using MEGA 7 software. 3D structures were constructed in Chimera 1.11.2rc software. Viruses were collected in 2015-2016 season fell into genetic group 6B and in two emerging subgroups, 6B.1 and 6B.2 by gene of HA and NA. Subgroups 6B.1 and 6B.2 are defined by the following amino acid substitutions. In the NS1 protein were identified new amino acid substitutions D2E, N48S, and E125D in 2015-2016 epidemic season. Specific changes were observed in HA protein antigenic sites, but viruses saved similarity to vaccine strain. NS1 protein acquired substitution associated with increased virulence of the influenza virus.


2021 ◽  
Vol 4 ◽  
Author(s):  
Dalila Destanović ◽  
Lejla Ušanović ◽  
Lejla Lasić ◽  
Jasna Hanjalić ◽  
Belma Kalamujić Stroil

Chaetopteryx villosa (Fabricius, 1798) is a caddisfly species distributed throughout Europe, except in the Balkan and Apennine Peninsula. However, phylogenetically close species belonging to the C. villosa group are widespread throughout entire Europe. Species of this group (C. villosa, C. gessneri, C. fusca, C. sahlbergi, C. atlantica, C. bosniaca, C. vulture, and C. trinacriae) have distinct distributions with some overlaps. Adult forms of these species are morphologically similar, whereas larval morphology is only known for some species. There are also indications of species hybridization (e.g., C. villosa x fusca). Presumably, the molecular approach for the species determination of this group would be highly beneficial. In the BOLD database, there are 154 specimens with COI-5P barcodes of C. villosa species. Out of the remaining species, C. sahlbergi has 27 specimens with a barcode, C. fusca 20, C. gessneri 5, C. bosniaca 5, and C. atlantica 1, whereas sequences from the species C. vulture and C. trinacriae are missing. Therefore, we tested the power of discrimination of the COI-5P marker in the C. villosa group, as the most common barcoding markers for species identification in animals. Only sequences from public records originating from experienced research groups or taxonomists and containing a specimen photograph were taken as input. A total of 75 sequences from the BOLD database were obtained. Out of these sequences, 11 belonged to C. fusca, 5 to C. gessneri, 52 to C. villosa, 5 to C. bosniaca, and 2 to C. sahlbergi. For the generation of overview trees, COI-5P barcodes of Rhyacophila fasciata and Rh. nubila were used as outgroups. All sequences were trimmed at 5’ and 3’ ends, resulting in a final alignment length of 516 base pairs. Multiple sequence alignments and editing were done in the MEGA-X software. Analysis of nucleotide polymorphism was done in DNASP6 software. MEGA-X was used to calculate the pairwise distance and overall mean p-distance, and to construct the overview trees. Analysis of DNA polymorphism revealed 14 haplotypes of C. villosa, 3 haplotypes of C. fusca, 2 haplotypes of C. gessneri, and one for species C. bosniaca and C. sahlbergi. There were no significant interspecific and intraspecific differences among haplotypes based on pairwise distances. The p-distance between one of the haplotypes of C. fusca and C. villosa was 0.000, whereas the p-distance among haplotypes of C. villosa varied from 0.001 to about 0.055. The mean overall p-distance among haplotypes of all species equaled 0.03. No species-specific clusters were observed when phylogenetic trees were constructed except for C. gessneri, regardless of the method used (i.e., NJ, UPGMA, ML, ME, or MP). To minimize the possibility of species misidentification, we used only records submitted by NTNU-Norwegian University of Science and Technology (Norway), SNSB-Zoologische Staatssammlung Muenchen (Germany), Zoologisches Forschungsmuseum Alexander Koenig (Germany), University of Oulu, Zoological Museum (Finland), prof Hans Malicky and prof Mladen Kučinić. No records identified as hybrids were included in the analyses. With the exception of C. gessneri, COI-5P marker failed to separate the species of the C. villosa group. However, it is highly unlikely that poor species determination was the basis for such a result. To enable the comprehensive and unbiased evaluation of the relationships within this group, data coverage in BOLD database for most of the studied species should be enhanced, encompassing different geographical distribution of samples. Further studies are needed to detect the array of molecular markers suitable for the species delineation in a complex group such as C. villosa.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2137 ◽  
Author(s):  
Xiang-Xiao Meng ◽  
Yan-Fang Xian ◽  
Li Xiang ◽  
Dong Zhang ◽  
Yu-Hua Shi ◽  
...  

The genus Sanguisorba, which contains about 30 species around the world and seven species in China, is the source of the medicinal plant Sanguisorba officinalis, which is commonly used as a hemostatic agent as well as to treat burns and scalds. Here we report the complete chloroplast (cp) genome sequences of four Sanguisorba species (S. officinalis, S. filiformis, S. stipulata, and S. tenuifolia var. alba). These four Sanguisorba cp genomes exhibit typical quadripartite and circular structures, and are 154,282 to 155,479 bp in length, consisting of large single-copy regions (LSC; 84,405–85,557 bp), small single-copy regions (SSC; 18,550–18,768 bp), and a pair of inverted repeats (IRs; 25,576–25,615 bp). The average GC content was ~37.24%. The four Sanguisorba cp genomes harbored 112 different genes arranged in the same order; these identical sections include 78 protein-coding genes, 30 tRNA genes, and four rRNA genes, if duplicated genes in IR regions are counted only once. A total of 39–53 long repeats and 79–91 simple sequence repeats (SSRs) were identified in the four Sanguisorba cp genomes, which provides opportunities for future studies of the population genetics of Sanguisorba medicinal plants. A phylogenetic analysis using the maximum parsimony (MP) method strongly supports a close relationship between S. officinalis and S. tenuifolia var. alba, followed by S. stipulata, and finally S. filiformis. The availability of these cp genomes provides valuable genetic information for future studies of Sanguisorba identification and provides insights into the evolution of the genus Sanguisorba.


2018 ◽  
Vol 43 (4) ◽  
pp. 323-332
Author(s):  
Sètondji Alban Paterne Etchiha Afoha ◽  
Antoine Affokpon ◽  
Lieven Waeyenberge ◽  
Nancy de Sutter ◽  
Clément Agbangla ◽  
...  

Abstract In Benin, yam production continues to face numerous production constraints, including yield and quality reduction by Scutellonema bradys. Implementation of efficient management techniques against this pest requires an improved understanding, including at the molecular level, of the pest. The current study aimed at identifying the Scutellonema spp. associated with yam in Benin and investigating the phylogenetic relationships between populations. Nematodes of the genus Scutellonema were obtained from tubers exhibiting external dry rot symptoms. DNA was extracted from nematodes belonging to 138 populations collected from 49 fields from 29 villages. For 51 of these populations, both the ITS1 and COI regions could be amplified via PCR, sequenced, compared with available sequences in the NCBI database and were identified as S. bradys. Maximum likelihood was used to construct 60% consensus phylogenetic trees based on 51 sequences. This phylogenetic analysis did not reveal any genetic separation between populations by cultivar, village, cropping system nor by agroecological zone. Neither could any subgroups within S. bradys be separated, indicating that no subspecies were present. An earlier published species-specific primer set was verified with the DNA of the 51 sequences and was considered a reliable and rapid method for S. bradys identification.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Mochamad Syaifudin ◽  
Michaël Bekaert ◽  
John B. Taggart ◽  
Kerry L. Bartie ◽  
Stefanie Wehner ◽  
...  

Abstract Tilapias (family Cichlidae) are of importance in aquaculture and fisheries. Hybridisation and introgression are common within tilapia genera but are difficult to analyse due to limited numbers of species-specific genetic markers. We tested the potential of double digested restriction-site associated DNA (ddRAD) sequencing for discovering single nucleotide polymorphism (SNP) markers to distinguish between 10 tilapia species. Analysis of ddRAD data revealed 1,371 shared SNPs in the de novo-based analysis and 1,204 SNPs in the reference-based analysis. Phylogenetic trees based on these two analyses were very similar. A total of 57 species-specific SNP markers were found among the samples analysed of the 10 tilapia species. Another set of 62 species-specific SNP markers was identified from a subset of four species which have often been involved in hybridisation in aquaculture: 13 for Oreochromis niloticus, 23 for O. aureus, 12 for O. mossambicus and 14 for O. u. hornorum. A panel of 24 SNPs was selected to distinguish among these four species and validated using 91 individuals. Larger numbers of SNP markers were found that could distinguish between the pairs of species within this subset. This technique offers potential for the investigation of hybridisation and introgression among tilapia species in aquaculture and in wild populations.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Qiu-jie Li ◽  
Na Su ◽  
Ling Zhang ◽  
Ru-chang Tong ◽  
Xiao-hui Zhang ◽  
...  

AbstractPulsatilla (Ranunculaceae) consists of about 40 species, and many of them have horticultural and/or medicinal value. However, it is difficult to recognize and identify wild Pulsatilla species. Universal molecular markers have been used to identify these species, but insufficient phylogenetic signal was available. Here, we compared the complete chloroplast genomes of seven Pulsatilla species. The chloroplast genomes of Pulsatilla were very similar and their length ranges from 161,501 to 162,669 bp. Eight highly variable regions and potential sources of molecular markers such as simple sequence repeats, large repeat sequences, and single nucleotide polymorphisms were identified, which are valuable for studies of infra- and inter-specific genetic diversity. The SNP number differentiating any two Pulsatilla chloroplast genomes ranged from 112 to 1214, and provided sufficient data for species delimitation. Phylogenetic trees based on different data sets were consistent with one another, with the IR, SSC regions and the barcode combination rbcL + matK + trnH-psbA produced slightly different results. Phylogenetic relationships within Pulsatilla were certainly resolved using the complete cp genome sequences. Overall, this study provides plentiful chloroplast genomic resources, which will be helpful to identify members of this taxonomically challenging group in further investigation.


2006 ◽  
Vol 12 (5) ◽  
pp. 470-477 ◽  
Author(s):  
J-M. Sueur ◽  
K. Beaumont ◽  
T. Cabioch ◽  
J. Orfila ◽  
F. Betsou

2021 ◽  
Vol 51 (3) ◽  
pp. 337-344
Author(s):  
Yongsung KIM ◽  
Hong XI ◽  
Jongsun PARK

The chloroplast genome of Limonium tetragonum (Thunb.) Bullock, a halophytic species, was sequenced to understand genetic differences based on its geographical distribution. The cp genome of L. tetragonum was 154,689 bp long (GC ratio is 37.0%) and has four subregions: 84,572 bp of large single-copy (35.3%) and 12,813 bp of small singlecopy (31.5%) regions were separated by 28,562 bp of inverted repeat (40.9%) regions. It contained 128 genes (83 proteincoding genes, eight rRNAs, and 37 tRNAs). Thirty-five single-nucleotide polymorphisms and 33 INDEL regions (88 bp in length) were identified. Maximum-likelihood and Bayesian inference phylogenetic trees showed that L. tetragonum formed a sister group with L. aureum, which is incongruent with certain previous studies, including a phylogenetic analysis.


Sign in / Sign up

Export Citation Format

Share Document