scholarly journals Circular RNA circYPEL2: A Novel Biomarker in Cervical Cancer

Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 38
Author(s):  
Xinyang Zhang ◽  
Siqi Yang ◽  
Wenbo Chen ◽  
Xin Dong ◽  
Rongyu Zhang ◽  
...  

Cervical cancer (CC) is one of the most threatening diseases in women. Circular RNAs (circRNAs) have been reported to be cancer hallmarks, but typical circRNAs in CC were rarely indicated. Through high-throughput sequencing in CC and normal cervix tissues, circYPEL2 (hsa_circ_0005600) was proposed as a candidate circRNA. CircYPEL2 exhibited significantly high expression in CC tissue and strong stability in CC cell lines. Furthermore, knockdown and overexpression of circYPEL2 indicated the potential involvement in CC proliferation, migration and invasion. Finally, the downstream regulatory genes of circYPEL2 were investigated by knockdown experiment in CC cell lines with high-throughput sequencing. In summary, our work identified circYPEL2 as a potential biomarker for clinical research of cervical cancer.

Author(s):  
Mingyi Zhou ◽  
Zhuo Yang ◽  
Danbo Wang ◽  
Peng Chen ◽  
Yong Zhang

Abstract Background As a novel type of non-coding RNA, circular RNAs (circRNAs) play a critical role in the initiation and development of various diseases, including cancer. However, the exact function of circRNAs in human cervical cancer remains largely unknown. Methods We identified the circRNA signature of upregulated circRNAs between cervical cancer and paired adjacent normal tissues. Using two different cohorts and GEO database, a total of six upregulated circRNAs were identified with a fold change > 2, and P < 0.05. Among these six circRNAs, hsa_circ_0072088 (circZFR) was the only exonic circRNA significantly overexpressed in cervical cancer. Functional experiments were performed to investigate the biological function of circZFR. CircRNA pull-down, circRNA immunoprecipitation (circRIP) and Co-immunoprecipitation (Co-IP) assays were executed to investigate the molecular mechanism underlying the function of circZFR. Results Functionally, circZFR knockdown represses the proliferation, invasion, and tumor growth. Furthermore, circRNA pull-down experiments combined with mass spectrometry unveil the interactions of circZFR with Single-Stranded DNA Binding Protein 1 (SSBP1). Mechanistically, circZFR bound with SSBP1, thereby promoting the assembly of CDK2/cyclin E1 complexes. The activation of CDK2/cyclin E1 complexes induced p-Rb phosphorylation, thus releasing activated E2F1 leading to cell cycle progression and cell proliferation. Conclusion Our findings provide the first evidence that circZFR is a novel onco-circRNA and might be a potential biomarker and therapeutic target for cervical cancer patients.


2019 ◽  
Vol 9 (6) ◽  
pp. 789-796
Author(s):  
Hui Cai ◽  
Hongmei Deng

Background: Emerging evidences have revealed that Long noncoding RNAs (LncRNAs) is crucial for cancer progression. Previous studies have elucidated that patients with higher LncRNA SPRY4IT1 was more advanced. This study aims to investigate the biological effects of LncRNA SPRY4-IT1 and preliminary explore the effects of LncRNA SPRY4-IT1 on cisplatin sensitivity. Materials and methods: Quantitative reverse transcriptase PCR was used to validate the expression of SPRY4IT1. Cell migration and invasion were detected by scratch test and Transwell assay. Cell cytometry was performed for cell apoptosis. The expression of proteins was evaluated by immunoblotting. The drug sensitivity was measured by CCK-8. Results: LncRNA SPRY4-IT1 was significantly expressed in cervical cancer cell lines compared to normal cells. Downregulation of LncRNA SPRY4-IT1 in cervical cancer cells suppress the cell viability, cell invasion and migration and promoted apoptosis. In addition, decreases of LncRNA SPRY4-IT1 enhanced the cisplatin sensitivity in cervical cell lines. Conclusion: LncRNA SPRY4-IT1 is a potential biomarker and therapy target for cervical cancer.


2021 ◽  
Author(s):  
Mingyi Zhou ◽  
Zhuo Yang ◽  
Danbo Wang ◽  
Peng Chen ◽  
Yong Zhang

Abstract Background: As a novel type of non-coding RNA, circular RNAs (circRNAs) play a critical role in the initiation and development of various diseases, including cancer. However, the exact function of circRNAs in human cervical cancer remains largely unknown. Methods: We identified the circRNA signature of upregulated circRNAs between cervical cancer and paired adjacent normal tissues. Using two different cohorts and GEO database, a total of six upregulated circRNAs were identified with a fold change >2, and P <0.05. Among these six circRNAs, hsa_circ_0072088 (circZFR) was the only exonic circRNA significantly overexpressed in cervical cancer. Functional experiments were performed to investigate the biological function of circZFR. CircRNA pull-down, circRNA immunoprecipitation (circRIP) and Co-immunoprecipitation (Co-IP) assays were executed to investigate the molecular mechanism underlying the function of circZFR.Results: Functionally, circZFR knockdown represses the proliferation, invasion, and tumor growth. Furthermore, circRNA pull-down experiments combined with mass spectrometry unveil the interactions of circZFR with Single-Stranded DNA Binding Protein 1 (SSBP1). Mechanistically, circZFR bound with SSBP1, thereby promoting the assembly of CDK2/cyclin E1 complexes. The activation of CDK2/cyclin E1 complexes induced p-Rb phosphorylation, thus releasing activated E2F1 leading to cell cycle progression and cell proliferation. Conclusion: Our findings provide the first evidence that circZFR is a novel onco-circRNA and might be a potential biomarker and therapeutic target for cervical cancer patients.


2021 ◽  
Author(s):  
Mingyi Zhou ◽  
Zhuo Yang ◽  
Danbo Wang ◽  
Peng Chen ◽  
Yong Zhang

Abstract Background: As a novel type of non-coding RNA, circular RNAs (circRNAs) play a critical role in the initiation and development of various diseases, including cancer. However, the exact function of circRNAs in human cervical cancer remains largely unknown. Methods: We identified the circRNA signature of upregulated circRNAs between cervical cancer and paired adjacent normal tissues. Using two different cohorts and GEO database, a total of six upregulated circRNAs were identified with a fold change >2, and P <0.05. Among these six circRNAs, hsa_circ_0072088 (circZFR) was the only exonic circRNA significantly overexpressed in cervical cancer. Functional experiments were performed to investigate the biological function of circZFR. CircRNA pull-down, circRNA immunoprecipitation (circRIP) and Co-immunoprecipitation (Co-IP) assays were executed to investigate the molecular mechanism underlying the function of circZFR.Results: Functionally, circZFR knockdown represses the proliferation, invasion, and tumor growth. Furthermore, circRNA pull-down experiments combined with mass spectrometry unveil the interactions of circZFR with Single-Stranded DNA Binding Protein 1 (SSBP1). Mechanistically, circZFR bound with SSBP1, thereby promoting the assembly of CDK2/cyclin E1 complexes. The activation of CDK2/cyclin E1 complexes induced p-Rb phosphorylation, thus releasing activated E2F1 leading to cell cycle progression and cell proliferation. Conclusion: Our findings provide the first evidence that circZFR is a novel onco-circRNA and might be a potential biomarker and therapeutic target for cervical cancer patients.


2020 ◽  
Author(s):  
Liang Jing ◽  
Junhui Wu ◽  
Xiaocheng Tang ◽  
Min Ma ◽  
Fei Long ◽  
...  

Abstract Background: Circular RNAs (circRNAs) are a novel class of noncoding RNAs. Increasing evidence indicates that circRNAs play an important role in the occurrence and development of tumors. However, the role of circRNA hsa_circ_0044556 in the progression of colorectal cancer (CRC) remains unclear. Methods: First, we searched for differentially expressed circRNAs using a circRNA microarray in paired CRC and adjacent normal tissues. The circRNA hsa_circ_0044556 was screened out from the existing CRC circRNA microarray in the Gene Expression Omnibus database and our microarray. The clinical significance of hsa_circ_0044556 expression level in CRC patients was then investigated. Finally, the functions of the targets of this circRNA were determined in CRC cell lines.Results:Hsa_circ_0044556 was highly expressed in CRC patients and was positively correlated with tumor stage and lymph node metastasis. In CRC cell lines, the proliferation, migration, and invasion of cancer cells were inhibited by knocking down hsa_circ_0044556 expression.Conclusion: Hsa_circ_0044556 promoted the progression of CRC. It is possible that hsa_circ_0044556 will become a novel biomarker or therapeutic target for CRC.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Zhongyue Huang ◽  
Chunyan Yuan ◽  
Huijie Gu ◽  
Xiangyang Cheng ◽  
Kaifeng Zhou ◽  
...  

Recent studies have suggested that circular RNAs play an important role in the progression of various cancers. However, few studies have revealed the great value of circRNAs in the diagnosis and prognosis prediction of osteosarcoma (OS). In this study, we performed experiments with the human OS cell lines and the results showed that the expression of circHIPK3 in OS cell lines was significantly upregulated compared to that in the normal cell line. In addition, the results showed that circHIPK3 could promote the migration, invasion, and growth of OS cells. Furthermore, miR-637 was identified as a target of circHIPK3, while STAT3 was targeted by miR-637. circHIPK3 could promote STAT3 expression via interacting with miR-637 in OS cells. In conclusion, our research uncovered an important role of the circHIPK3/miR-637/STAT3 pathway in the migration and invasion of OS cells and suggested that circHIPK3 may be a prognostic marker and a promising therapeutic target for OS.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Bowen Li ◽  
Feng Wang ◽  
Xiang Li ◽  
Shuai Sun ◽  
Yuehong Shen ◽  
...  

Objective. Oral squamous cell carcinoma (OSCC) is the most common cancer of the head and neck region. The circular RNA (circRNA) is known to serve an important role in the carcinogenesis of different types of cancer. However, the circRNA role of OSCC remains unclear. Methods. 8 pairs of OSCC tissues and adjacent normal tissues were obtained to detect circRNAs expression by high-throughput sequencing, and 45 pairs of OSCC tissues were selected to verify the differentially significant circRNAs by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). To further investigate the role of hsa_circ_0008309, the circRNA-microRNA (miR)-mRNA network was predicted using bioinformatics databases. The expression levels of hsa_circ_0008309, miR-1290, miR-136-5P, and miR-382-5P in SCC-15 and CAL27 cell lines were detected by RT-qPCR. Western blotting was performed to detect the protein level of Ataxin 1 (ATXN1). Results. The high-throughput sequencing results demonstrated that circRNAs were abundantly expressed in OSCC, and 16 circRNAs were significantly differentially expressed. Hsa_circ_0008309 was significantly downregulated in 45 pairs of OSCC tissue samples and was statistically correlated with pathological differentiation. The bioinformatics databases suggested that hsa_circ_0008309 could combine with miR-1290, miR-136-5P, and miR-382-5P, respectively, to regulate the expression of ATXN1. It was subsequently identified that hsa_circ_0008309 may inhibit miR-136-5P and miR-382-5P expression and increase ATXN1 expression in the OSCC cell lines. Conclusion. In summary, the results of the present study revealed that OSCC tissues have abundant circRNAs and, to the best of our knowledge, we firstly explore the regulatory role of the hsa_circ_0008309-miR-136-5P/hsa-miR-382-5P-ATXN1 network in OSCC. The results indicated that hsa_circ_0008309 may be a potential biomarker for OSCC.


2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Chen Yang ◽  
Zezhong Mou ◽  
Siqi Wu ◽  
Yuxi Ou ◽  
Zheyu Zhang ◽  
...  

AbstractBladder cancer (BC) is known as a common and lethal urinary malignancy worldwide. Circular RNAs (circRNAs), an emerging non-coding RNA, participate in carcinogenesis process of several cancers including BC. In this study, high-throughput sequencing and RT-qPCR were applied to discover and validate abnormal high expression of circUBE2K in BC tissues. Fluorescence in situ hybridization (FISH) was used to detect hsa_circ_0009154 (circUBE2K) expression and subcellular localization in BC tissues. High circUBE2K predicted unfavorable prognoses in BCs, as well as correlated with clinical features. CCK8, transwell, EdU and wound healing assays demonstrated down-regulating circUBE2K decreased BC cell phenotype as proliferation, invasion, and migration, respectively. Further studies showed that circUBE2K promoted BC progression via sponging miR-516b-5p and enhancing ARHGAP5 expression through regulating RhoA activity. Dual-luciferase reporter, FISH and RNA pulldown assays were employed to verify the relationships among circUBE2K/miR-516b-5p/ARHGAP5/RhoA axis. Down-regulating miR-516b-5p or overexpressing ARHGAP5 restored RhoA activity mediated BC cell properties after silencing circUBE2K. Subcutaneous xenograft and metastasis model identified circUBE2K significantly increased BC cell metastasis and proliferation in-vivo. Taken together, we found that circUBE2K is a tumor-promoting circRNA in BC that functions as a ceRNA to regulate ARHGAP5 expression via sponging miR-516b-5p.


2020 ◽  
Author(s):  
Mingyi Zhou ◽  
Zhuo Yang ◽  
Danbo Wang ◽  
Peng Chen ◽  
Yong Zhang

Abstract Background: As a novel type of non-coding RNA, circular RNAs (circRNAs) play a critical role in the initiation and development of various diseases, including cancer. However, the exact function of circRNAs in human cervical cancer remains largely unknown. Methods: We identified the circRNA signature of upregulated circRNAs between cervical cancer and paired adjacent normal tissues. Using two different cohorts and GEO database, a total of six upregulated circRNAs were identified with a fold change >2, and P <0.05. Among these six circRNAs, hsa_circ_0072088 (circZFR) was the only exonic circRNA significantly overexpressed in cervical cancer. Functional experiments were performed to investigate the biological function of circZFR. CircRNA pull-down, circRNA immunoprecipitation (circRIP) and Co-immunoprecipitation (Co-IP) assays were executed to investigate the molecular mechanism underlying the function of circZFR.Results: Functionally, circZFR knockdown represses the proliferation, invasion, and tumor growth. Furthermore, circRNA pull-down experiments combined with mass spectrometry unveil the interactions of circZFR with Single-Stranded DNA Binding Protein 1 (SSBP1). Mechanistically, circZFR bound with SSBP1, thereby promoting the assembly of CDK2/cyclin E1 complexes. The activation of CDK2/cyclin E1 complexes induced p-Rb phosphorylation, thus releasing activated E2F1 leading to cell cycle progression and cell proliferation. Conclusion: Our findings provide the first evidence that circZFR is a novel onco-circRNA and might be a potential biomarker and therapeutic target for cervical cancer patients.


2020 ◽  
Author(s):  
Liang Jing ◽  
Junhui Wu ◽  
Xiaocheng Tang ◽  
Min Ma ◽  
Fei Long ◽  
...  

Abstract Background Circular RNAs (circRNAs) are a novel class of noncoding RNAs. Increasing evidence indicates that circRNAs play an important role in the occurrence and development of tumors. However, the role of circRNAs in the development and progression of colorectal cancer (CRC) remains unclear. Methods First, we searched for differentially expressed circRNAs using a circRNA microarray in paired CRC and adjacent normal tissues. The circRNA hsa_circ_0044556 was screened out from the existing CRC circRNA microarray in the Gene Expression Omnibus database and our microarray. The clinical significance of hsa_circ_0044556 expression level in CRC patients was then investigated. Finally, the functions of the targets of this circRNA were determined in CRC cell lines. Results hsa_circ_0044556 was highly expressed in CRC patients and was positively correlated with tumor stage and lymph node metastasis. In CRC cell lines, the proliferation, migration, and invasion of cancer cells were inhibited by knocking down hsa_circ_0044556 expression. Conclusion hsa_circ_0044556 promoted the development and progression of CRC. It is possible that hsa_circ_0044556 will become a novel biomarker or therapeutic target for CRC.


Sign in / Sign up

Export Citation Format

Share Document