scholarly journals Diachronous Redistribution of Hf and Nd Isotopes at the Crystal Scale—Consequences for the Isotopic Evolution of a Poly-Metamorphic Crustal Terrane

Geosciences ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 36
Author(s):  
Adrien Vezinet ◽  
Emilie Thomassot ◽  
Yan Luo ◽  
Chiranjeeb Sarkar ◽  
D. Graham Pearson

In metamorphic rocks, mineral species react over a range of pressure–temperature conditions that do not necessarily overlap. Mineral equilibration can occur at varied points along the metamorphic pressure–temperature (PT) path, and thus at different times. The sole or dominant use of zircon isotopic compositions to constrain the evolution of metamorphic rocks might then inadvertently skew geological interpretations towards one aspect or one moment of a rock’s history. Here, we present in-situ U–Pb/Sm–Nd isotope analyses of the apatite crystals extracted from two meta-igneous rocks exposed in the Saglek Block (North Atlantic craton, Canada), an Archean metamorphic terrane, with the aim of examining the various signatures and events that they record. The data are combined with published U–Pb/Hf/O isotope compositions of zircon extracted from the same hand-specimens. We found an offset of nearly ca. 1.5 Gyr between U-Pb ages derived from the oldest zircon cores and apatite U–Pb/Sm–Nd isotopic ages, and an offset of ca. 200 Ma between the youngest zircon metamorphic overgrowths and apatite. These differences in metamorphic ages recorded by zircon and apatite mean that the redistribution of Hf isotopes (largely hosted in zircon) and Nd isotopes (largely hosted in apatite within these rocks), were not synchronous at the hand-specimen scale (≤~0.001 m3). We propose that the diachronous redistribution of Hf and Nd isotopes and their parent isotopes was caused by the different PT conditions of growth equilibration between zircon and apatite during metamorphism. These findings document the latest metamorphic evolution of the Saglek Block, highlighting the role played by intra-crustal reworking during the late-Archean regional metamorphic event.

2020 ◽  
Author(s):  
Johannes Hammerli

<p>The long-lived radiogenic isotope systems Lu-Hf and Sm-Nd have been widely used by geochemists to study magma sources and crustal residential times of (igneous) rocks in order to understand how early crust formed and to model the production rate and volume of continental crust on global and regional-scales during the last ~4.4 Ga. However, while throughout most of Earth’s history Nd and Hf isotope signatures in terrestrial rocks are well correlated due to their very similar geochemical behavior, some of Earth’s oldest rocks show an apparent inconsistency in their Nd and Hf isotope signatures. While Hf isotopes in early Archean rocks are generally (near) chondritic, Nd isotope signatures can be distinctly super- or sub-chondritic. The super-chondritic Nd isotope values in Eoarchean samples would suggest that these rocks are derived from a mantle reservoir depleted by prior crust extraction. The chondritic Hf isotope values, on the other hand, support a mantle source from which no significant volume of crust had been extracted. While a range of different processes, some of them speculative, might explain this Hf-Nd isotope paradox, recent research [1, 2] has shown that relatively simple, post-magmatic, open-system processes can explain decoupling of the typically correlative Hf-Nd isotope signatures. This talk will focus on the importance of identifying Nd-bearing accessory minerals in (Archean) rocks to understand how the Sm-Nd isotope system is controlled and how in situ isotope and trace element analyses by LA-(MC)-ICP-MS in combination with detailed petrographic observations help to understand when and via which processes the two isotope systems become decoupled. Reconstructing the isotopic evolution of the different isotope systems since formation of the protoliths has important implications for our understanding of early crust formation and questions some of the proposed current models for early crust extraction from the mantle.</p><p> </p><p>[1] Hammerli et al. (2019) Chem. Geol 2; [2] Fisher et al. (2020) EPSL</p>


2020 ◽  
Vol 157 (12) ◽  
pp. 2067-2080 ◽  
Author(s):  
P. Alasino ◽  
C. Casquet ◽  
C. Galindo ◽  
R. Pankhurst ◽  
C. Rapela ◽  
...  

AbstractWe report a study of whole-rock O–H–Sr–Nd isotopes of Ordovician igneous and metamorphic rocks exposed at different crustal palaeodepths along c. 750 km in the Sierras Pampeanas, NW Argentina. The isotope compositions preserved in the intermediate rocks (mostly tonalite) (average δ18O = +8.7 ± 0.5‰, δD = −73 ± 14‰, 87Sr/86Srt = 0.7088 ± 0.0001 and εNdt = −4.5 ± 0.6) show no major difference from those of most of the mafic rocks (average δ18O = +8 ± 0.8‰, δD = −84 ± 18‰, 87Sr/86Srt = 0.7082 ± 0.0016 and εNdt = −4 ± 1.1), suggesting that most of their magmas acquired their crustal characteristics in the mantle. The estimate of assimilation of crustal material (δ18O = +12.2 ± 1.7‰, δD = −89 ± 21‰, 87Sr/86Srt = 0.7146 ± 0.0034 and εNdt = −6.9 ± 0.7) by the tonalite is in most samples within the range 10–20%. Felsic magmas that reached upper crustal levels had isotope values (δ18O = +9.9 ± 1.5‰, δD= −76 ± 5‰, 87Sr/86Srt = 0.7067 ± 0.0010, εNdt = −3.5 ± 1.4) suggesting that they were not derived by fractionation of the contaminated intermediate magmas, but evolved from different magma batches. Some rocks of the arc, both igneous (mostly gabbro and tonalite) and metamorphic, underwent restricted interaction with meteoric fluids. Reported values of δ18O of magmatic zircons from the Famatinian arc rocks (+6 to +9‰) are comparable to our δ18O whole-rock data, indicating that pervasive oxygen isotope exchange in the lower crust was not a major process after zircon crystallization.


2016 ◽  
Vol 425 ◽  
pp. 110-126 ◽  
Author(s):  
Carl Spandler ◽  
Johannes Hammerli ◽  
Peng Sha ◽  
Hannah Hilbert-Wolf ◽  
Yi Hu ◽  
...  
Keyword(s):  

1980 ◽  
Vol 117 (6) ◽  
pp. 547-563 ◽  
Author(s):  
R. E. Swarbrick ◽  
A. H. F. Robertson

SummaryRecent resurgence of interest in the Mesozoic rocks of SW and southern Cyprus necessitates redefinition of the Mesozoic sedimentary and igneous rocks in line with modern stratigraphical convention. Two fundamentally different rocks associations are present, the Troodos Complex, not redefined, a portion of late Cretaceous oceanic crust, and the Mamonia Complex, the tectonically dismembered remnants of a Mesozoic continental margin. Based on earlier work, the Mamonia Complex is divided into two groups, each subdivided into a number of subsidiary formations and members. The Ayios Photios Group is wholly sedimentary, and records the evolution of a late Triassic to Cretaceous inactive continental margin. The Dhiarizos Group represents Triassic alkalic volcanism and sedimentation adjacent to a continental margin. Several other formations not included in the two groups comprise sedimentary mélange and metamorphic rocks. The Troodos Complex possesses an in situ late Cretaceous sedimentary cover which includes two formations of ferromanganiferous pelagic sediments, radiolarites and volcaniclastic sandstones. The overlying Cainozoic calcareous units are not redefined here.


1993 ◽  
Vol 130 (6) ◽  
pp. 835-846 ◽  
Author(s):  
S. R. Noble ◽  
R. D. Tucker ◽  
T. C. Pharaoh

AbstractThe U-Pb isotope ages and Nd isotope characteristics of asuite of igneous rocks from the basement of eastern England show that Ordovician calc-alkaline igneous rocks are tectonically interleaved with late Precambrian volcanic rocks distinct from Precambrian rocks exposed in southern Britain. New U-Pb ages for the North Creake tuff (zircon, 449±13 Ma), Moorby Microgranite (zircon, 457 ± 20 Ma), and the Nuneaton lamprophyre (zircon and baddeleyite, 442 ± 3 Ma) confirm the presence ofan Ordovician magmatic arc. Tectonically interleaved Precambrian volcanic rocks within this arc are verified by new U-Pb zircon ages for tuffs at Glinton (612 ± 21 Ma) and Orton (616 ± 6 Ma). Initial εNd values for these basement rocks range from +4 to - 6, consistent with generation of both c. 615 Ma and c. 450 Ma groups of rocksin continental arc settings. The U-Pb and Sm-Nd isotope data support arguments for an Ordovician fold/thrust belt extending from England to Belgium, and that the Ordovician calc-alkaline rocks formed in response to subductionof Tornquist Sea oceanic crust beneath Avalonia.


Author(s):  
Le Zhang ◽  
Jia-Lin Wu ◽  
Yanqiang Zhang ◽  
Ya-Nan Yang ◽  
Pengli He ◽  
...  

Titanite is a widespread accessory nesosilicate with high trace-element contents including rare-earth elements, Th, and U, and is thus suitable for in situ isotopic and trace-element analyses and U–Pb dating....


Geology ◽  
2020 ◽  
Vol 48 (5) ◽  
pp. 488-492 ◽  
Author(s):  
M. Brown ◽  
C.L. Kirkland ◽  
T.E. Johnson

Abstract A time-series analysis of thermobaric ratios (temperature/pressure [T/P]) for Paleoarchean to Cenozoic metamorphic rocks identified significant shifts in mean T/P that may be related to secular change in the geodynamics on Earth. Thermobaric ratios showed significant (>95% confidence) change points at 1910, 902, 540, and 515 Ma, recording drops in mean T/P, and at 1830, 604, and 525 Ma, recording rises in mean T/P. Highest mean T/P occurred during the Mesoproterozoic, and lowest mean T/P occurred from the Cambrian to the Oligocene. Correlated changes were seen between T/P and global data sets of time-constrained hafnium (Hf) and oxygen (O) isotope compositions in zircon. The range of correlated variation in T/P, Hf, and O was larger during the formation of Rodinia than Columbia. Large changes and a wide range for these variables continued through the Phanerozoic, during which a statistically significant 83 m.y. frequency of T/P excursions recorded the high tempo of orogenic activity associated with the separation, migration, and accretion of continental terranes during the formation of Pangea. Since the early Tonian, the decreasing mean T/P of metamorphism, widespread appearance of blueschist and ultrahigh-pressure metamorphism, and wide fluctuations in Hf and O isotope compositions document a change to the modern plate-tectonic regime, characterized by widespread continental subduction and deeper slab breakoff than in the Proterozoic.


Sign in / Sign up

Export Citation Format

Share Document