scholarly journals Assessment of Specific Yield in Karstified Fractured Rock through the Water-Budget Method

Geosciences ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 344
Author(s):  
Marco Delle Rose ◽  
Corrado Fidelibus ◽  
Paolo Martano

In this note, the Water Budget Method (WBM) is applied to estimate local values of the specific yield of the deep karst aquifer of Salento peninsula. A selection in a period of two years of relevant short precipitation events has been considered and the related localized recharges have been compared to the water table fluctuations measured at two selected wells. The recharge amounts have been corrected by using data of evapotranspiration and soil water storage available from a micrometeorological base. The results are very similar for both the wells and more consistent when the corrections are applied. A discussion involving frequency and apertures of the fractures in the rock mass of the aquifer suggests the effect of the karst dissolution to be dominant in determining these values of the specific yield.

2014 ◽  
Vol 7 (1) ◽  
pp. 73-129
Author(s):  
M. Guimberteau ◽  
P. Ciais ◽  
A. Ducharne ◽  
J. P. Boisier ◽  
S. Peng ◽  
...  

Abstract. This study analyzes the impact of the two soil model parameterizations of the Land Surface Model ORCHIDEE on their estimates of Amazonian hydrology and phenology for five major sub-basins (Xingu, Tapajós, Madeira, Solimões and Negro), during the 29 yr period 1980–2008. The two soil models are a simple 2 layer soil scheme with a bucket topped by an evaporative layer vs. an 11 layer soil diffusion scheme. The soil models were coupled with a river routing module and a process model of plant physiology, phenology and carbon dynamics. The simulated water budget and vegetation functioning components were compared with several datasets at sub-basin scale. The use of the 11 layer soil diffusion scheme did not significantly change the Amazonian water budget simulation when compared to the 2 layer soil scheme (+3.1 and −3.0% in evapotranspiration and river discharge, respectively). However, the higher water holding capacity of the soil and the physically based representation of runoff and drainage in the 11 layer soil diffusion, resulted in higher dynamics of soil water storage variation and improved simulation of the total terrestrial water storage when compared to GRACE satellite estimates. The greater soil water storage within the 11 layer soil diffusion scheme resulted in increased dry-season evapotranspiration (+0.5 mm d−1, +17%) and river discharge in the southeastern sub-basins such as the Xingu. Evapotranspiration over this sub-basin was sustained during the whole dry season with the 11 layer soil diffusion model, whereas the 2 layer soil scheme limited it at the end of the dry season. Lower plant water stress simulated by the 11 layer soil diffusion scheme, led to better simulation of the seasonal cycle of photosynthesis (GPP) when compared to a GPP data-driven model based upon eddy-covariance and satellite greenness measurements. Simulated LAI was consequently higher with the 11LAY (up to +0.4) but exhibited too low a variation when compared to a satellite-based dataset. The dry-season length between 4 and 7 months over the entire Amazon basin was found to be critical in distinguishing differences in hydrological feedbacks between the soil and the vegetation cover simulated by the two soil models. Overall, the 11 layer soil diffusion scheme provided little improvement in simulated hydrology on average over the wet tropical Amazonian sub-basins but a more significant improvement over the drier sub-basins. However, the use of the 11 layer soil diffusion scheme might become critical for assessments of future hydrological changes, especially in southern regions of the Amazon basin where longer dry season and more severe droughts are expected in the next century.


2014 ◽  
Vol 7 (3) ◽  
pp. 1115-1136 ◽  
Author(s):  
M. Guimberteau ◽  
A. Ducharne ◽  
P. Ciais ◽  
J. P. Boisier ◽  
S. Peng ◽  
...  

Abstract. This study analyzes the performance of the two soil hydrology schemes of the land surface model ORCHIDEE in estimating Amazonian hydrology and phenology for five major sub-basins (Xingu, Tapajós, Madeira, Solimões and Negro), during the 29-year period 1980–2008. A simple 2-layer scheme with a bucket topped by an evaporative layer is compared to an 11-layer diffusion scheme. The soil schemes are coupled with a river routing module and a process model of plant physiology, phenology and carbon dynamics. The simulated water budget and vegetation functioning components are compared with several data sets at sub-basin scale. The use of the 11-layer soil diffusion scheme does not significantly change the Amazonian water budget simulation when compared to the 2-layer soil scheme (+3.1 and −3.0% in evapotranspiration and river discharge, respectively). However, the higher water-holding capacity of the soil and the physically based representation of runoff and drainage in the 11-layer soil diffusion scheme result in more dynamic soil water storage variation and improved simulation of the total terrestrial water storage when compared to GRACE satellite estimates. The greater soil water storage within the 11-layer scheme also results in increased dry-season evapotranspiration (+0.5 mm d−1, +17%) and improves river discharge simulation in the southeastern sub-basins such as the Xingu. Evapotranspiration over this sub-basin is sustained during the whole dry season with the 11-layer soil diffusion scheme, whereas the 2-layer scheme limits it after only 2 dry months. Lower plant drought stress simulated by the 11-layer soil diffusion scheme leads to better simulation of the seasonal cycle of photosynthesis (GPP) when compared to a GPP data-driven model based on eddy covariance and satellite greenness measurements. A dry-season length between 4 and 7 months over the entire Amazon Basin is found to be critical in distinguishing differences in hydrological feedbacks between the soil and the vegetation cover simulated by the two soil schemes. On average, the multilayer soil diffusion scheme provides little improvement in simulated hydrology over the wet tropical Amazonian sub-basins, but a more significant improvement is found over the drier sub-basins. The use of a multilayer soil diffusion scheme might become critical for assessments of future hydrological changes, especially in southern regions of the Amazon Basin where longer dry seasons and more severe droughts are expected in the next century.


Author(s):  
Nathaniel Parker ◽  
Andres Patrignani

Abstract Complete and accurate precipitation records are important for developing reliable flood warning systems, streamflow forecasts, rainfall-runoff estimates, and numerical land surface predictions. Existing methods for flagging missing precipitation events and filling gaps in the precipitation record typically rely on precipitation from neighboring stations. In this study, we investigated an alternative method for back-calculating precipitation events using changes in rootzone soil water storage. Our hypothesis was that using a different variable (i.e., soil moisture) from the same monitoring station will be more accurate in estimating hourly precipitation than using the same variable (i.e., precipitation) from the nearest neighboring station. Precipitation events were estimated from soil moisture as the sum of hourly changes in profile soil water storage. Hourly precipitation and soil moisture observations were obtained for a mesoscale network in the central U.S. Great Plains from May 2017 to December 2020. The proposed method based on soil moisture had a minimum detectable limit of 7.6 mm (95th percentile of undetected precipitation events) due to canopy and soil interception. The method was outperformed by the nearest neighbor (NN) interpolation method when neighboring stations were at distances of <10 km. However, the proposed method outperformed the NN method in 22 out of 27 stations when nearest stations were at distances >10 km. Using changes in soil water storage resulted effective in flagging and reconstructing actual missing precipitation events caused by pluviometer malfunction, highlighting new opportunities for using readily available in situ soil moisture information for operational quality control in mesoscale environmental monitoring networks.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Mandana Rahgozar ◽  
Nirjhar Shah ◽  
Mark Ross

Simultaneous measurements of soil moisture profiles and water table heads, along a flow path, were used to determine evapotranspiration (ET) along with other components of the water budget. The study was conducted at a small-scale (~0.8 Km2) hydrologic monitoring field site in Hillsborough County, Florida, from January 2002 to June 2004. Frequency Domain Reflectometry soil moisture probes, installed in close proximity to water table monitoring wells were used to derive changes in the soil water storage. A one-dimensional transect model was developed; changes in the soil water storage and water table observations served as input to determine all vertical and lateral boundary fluxes along the shallow water table flow plane. Two distinct land cover environments, grassland and an alluvial wetland forest, were investigated in this particular study. The analysis provided temporally variable ET estimates for the two land covers with annual totals averaging 850 mm for grassland, to 1100 mm for the alluvial wetland forest. Quantitative estimates of other components of a water budget, for example, infiltration, interception capture, total rainfall excess, and runoff were also made on a quarterly and annual basis. Novelty of this approach includes ability to resolve ET components and other water budget fluxes that provide useful parameterization and calibration potential for predictive simulation models.


Water ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 37
Author(s):  
Tomás de Figueiredo ◽  
Ana Caroline Royer ◽  
Felícia Fonseca ◽  
Fabiana Costa de Araújo Schütz ◽  
Zulimar Hernández

The European Space Agency Climate Change Initiative Soil Moisture (ESA CCI SM) product provides soil moisture estimates from radar satellite data with a daily temporal resolution. Despite validation exercises with ground data that have been performed since the product’s launch, SM has not yet been consistently related to soil water storage, which is a key step for its application for prediction purposes. This study aimed to analyse the relationship between soil water storage (S), which was obtained from soil water balance computations with ground meteorological data, and soil moisture, which was obtained from radar data, as affected by soil water storage capacity (Smax). As a case study, a 14-year monthly series of soil water storage, produced via soil water balance computations using ground meteorological data from northeast Portugal and Smax from 25 mm to 150 mm, were matched with the corresponding monthly averaged SM product. Linear (I) and logistic (II) regression models relating S with SM were compared. Model performance (r2 in the 0.8–0.9 range) varied non-monotonically with Smax, with it being the highest at an Smax of 50 mm. The logistic model (II) performed better than the linear model (I) in the lower range of Smax. Improvements in model performance obtained with segregation of the data series in two subsets, representing soil water recharge and depletion phases throughout the year, outlined the hysteresis in the relationship between S and SM.


2016 ◽  
Vol 13 (1) ◽  
pp. 63-75 ◽  
Author(s):  
K. Imukova ◽  
J. Ingwersen ◽  
M. Hevart ◽  
T. Streck

Abstract. The energy balance of eddy covariance (EC) flux data is typically not closed. The nature of the gap is usually not known, which hampers using EC data to parameterize and test models. In the present study we cross-checked the evapotranspiration data obtained with the EC method (ETEC) against ET rates measured with the soil water balance method (ETWB) at winter wheat stands in southwest Germany. During the growing seasons 2012 and 2013, we continuously measured, in a half-hourly resolution, latent heat (LE) and sensible (H) heat fluxes using the EC technique. Measured fluxes were adjusted with either the Bowen-ratio (BR), H or LE post-closure method. ETWB was estimated based on rainfall, seepage and soil water storage measurements. The soil water storage term was determined at sixteen locations within the footprint of an EC station, by measuring the soil water content down to a soil depth of 1.5 m. In the second year, the volumetric soil water content was additionally continuously measured in 15 min resolution in 10 cm intervals down to 90 cm depth with sixteen capacitance soil moisture sensors. During the 2012 growing season, the H post-closed LE flux data (ETEC =  3.4 ± 0.6 mm day−1) corresponded closest with the result of the WB method (3.3 ± 0.3 mm day−1). ETEC adjusted by the BR (4.1 ± 0.6 mm day−1) or LE (4.9 ± 0.9 mm day−1) post-closure method were higher than the ETWB by 24 and 48 %, respectively. In 2013, ETWB was in best agreement with ETEC adjusted with the H post-closure method during the periods with low amount of rain and seepage. During these periods the BR and LE post-closure methods overestimated ET by about 46 and 70 %, respectively. During a period with high and frequent rainfalls, ETWB was in-between ETEC adjusted by H and BR post-closure methods. We conclude that, at most observation periods on our site, LE is not a major component of the energy balance gap. Our results indicate that the energy balance gap is made up by other energy fluxes and unconsidered or biased energy storage terms.


Sign in / Sign up

Export Citation Format

Share Document