Reconstructing Precipitation Events Using Co-located Soil Moisture Information

Author(s):  
Nathaniel Parker ◽  
Andres Patrignani

Abstract Complete and accurate precipitation records are important for developing reliable flood warning systems, streamflow forecasts, rainfall-runoff estimates, and numerical land surface predictions. Existing methods for flagging missing precipitation events and filling gaps in the precipitation record typically rely on precipitation from neighboring stations. In this study, we investigated an alternative method for back-calculating precipitation events using changes in rootzone soil water storage. Our hypothesis was that using a different variable (i.e., soil moisture) from the same monitoring station will be more accurate in estimating hourly precipitation than using the same variable (i.e., precipitation) from the nearest neighboring station. Precipitation events were estimated from soil moisture as the sum of hourly changes in profile soil water storage. Hourly precipitation and soil moisture observations were obtained for a mesoscale network in the central U.S. Great Plains from May 2017 to December 2020. The proposed method based on soil moisture had a minimum detectable limit of 7.6 mm (95th percentile of undetected precipitation events) due to canopy and soil interception. The method was outperformed by the nearest neighbor (NN) interpolation method when neighboring stations were at distances of <10 km. However, the proposed method outperformed the NN method in 22 out of 27 stations when nearest stations were at distances >10 km. Using changes in soil water storage resulted effective in flagging and reconstructing actual missing precipitation events caused by pluviometer malfunction, highlighting new opportunities for using readily available in situ soil moisture information for operational quality control in mesoscale environmental monitoring networks.

Water ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 37
Author(s):  
Tomás de Figueiredo ◽  
Ana Caroline Royer ◽  
Felícia Fonseca ◽  
Fabiana Costa de Araújo Schütz ◽  
Zulimar Hernández

The European Space Agency Climate Change Initiative Soil Moisture (ESA CCI SM) product provides soil moisture estimates from radar satellite data with a daily temporal resolution. Despite validation exercises with ground data that have been performed since the product’s launch, SM has not yet been consistently related to soil water storage, which is a key step for its application for prediction purposes. This study aimed to analyse the relationship between soil water storage (S), which was obtained from soil water balance computations with ground meteorological data, and soil moisture, which was obtained from radar data, as affected by soil water storage capacity (Smax). As a case study, a 14-year monthly series of soil water storage, produced via soil water balance computations using ground meteorological data from northeast Portugal and Smax from 25 mm to 150 mm, were matched with the corresponding monthly averaged SM product. Linear (I) and logistic (II) regression models relating S with SM were compared. Model performance (r2 in the 0.8–0.9 range) varied non-monotonically with Smax, with it being the highest at an Smax of 50 mm. The logistic model (II) performed better than the linear model (I) in the lower range of Smax. Improvements in model performance obtained with segregation of the data series in two subsets, representing soil water recharge and depletion phases throughout the year, outlined the hysteresis in the relationship between S and SM.


Agronomy ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 37 ◽  
Author(s):  
Yan Liang ◽  
Shahbaz Khan ◽  
Ai-xia Ren ◽  
Wen Lin ◽  
Sumera Anwar ◽  
...  

Dryland winter wheat in the Loess Plateau is facing a yield reduction due to a shortage of soil moisture and delayed sowing time. The field experiment was conducted at Loess Plateau in Shanxi, China from 2012 to 2015, to study the effect of subsoiling and conventional tillage and different sowing dates on the soil water storage, Nitrogen (N) accumulation, and remobilization and yield of winter wheat. The results showed that subsoiling significantly improved the soil water storage (0–300 cm soil depth) and increased the contribution of N translocation to grain N and grain yield (17–36%). Delaying sowing time had reduced the soil water storage at sowing and winter accumulated growing degree days by about 180 °C. The contribution of N translocation to grain yield was maximum in glume + spike followed by in leaves and minimum by stem + sheath. Moreover, there was a positive relationship between the N accumulation and translocation and the soil moisture in the 20–300 cm range. Subsoiling during the fallow period and the medium sowing date was beneficial for improving the soil water storage and increased the N translocation to grain, thereby increasing the yield of wheat, especially in a dry year.


2009 ◽  
Vol 13 (13) ◽  
pp. 1-22 ◽  
Author(s):  
Charles P-A. Bourque ◽  
Quazi K. Hassan

Abstract This paper explores the relationship between vegetation in the Liangzhou Oasis in the Upper Shiyang River watershed (USRW) of west-central Gansu, China, and within-watershed precipitation, soil water storage, and oasis self-support. Oases along the base of the Qilian Mountains receive a significant portion of their water supply (over 90%) from surface and subsurface flow originating from the Qilian Mountains. Investigation of vegetation control on oasis water conditions in the USRW is based on an application of a process model of soil water hydrology. The model is used to simulate long-term soil water content (SWC) in the Liangzhou Oasis as a function of (i) monthly composites of Moderate Resolution Imaging Spectroradiometer (MODIS) images of land surface and mean air temperature, (ii) spatiotemporal calculations of monthly precipitation and relative humidity generated with the assistance of genetic algorithms (GAs), and (iii) a 80-m-resolution digital elevation model (DEM) of the area. Modeled removal of vegetation is shown to affect within-watershed precipitation and soil water storage by reducing the exchange of water vapor from the land surface to the air, increasing the air’s lifting condensation level by promoting drier air conditions, and causing the high-intensity precipitation band in the Qilian Mountains to weaken and to be displaced upward, leading to an overall reduction of water to the Liangzhou Oasis.


Author(s):  
Otto Corrêa Rotunno Filho ◽  
Afonso Augusto Magalhães de Araujo ◽  
Luciano Nóbrega Rodrigues Xavier ◽  
Daniel Medeiros Moreira ◽  
Rafael Carneiro Di Bello ◽  
...  

Geosciences ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 344
Author(s):  
Marco Delle Rose ◽  
Corrado Fidelibus ◽  
Paolo Martano

In this note, the Water Budget Method (WBM) is applied to estimate local values of the specific yield of the deep karst aquifer of Salento peninsula. A selection in a period of two years of relevant short precipitation events has been considered and the related localized recharges have been compared to the water table fluctuations measured at two selected wells. The recharge amounts have been corrected by using data of evapotranspiration and soil water storage available from a micrometeorological base. The results are very similar for both the wells and more consistent when the corrections are applied. A discussion involving frequency and apertures of the fractures in the rock mass of the aquifer suggests the effect of the karst dissolution to be dominant in determining these values of the specific yield.


2021 ◽  
Author(s):  
Veronica Fritz ◽  
Thakshajini Thaasan ◽  
Andrew Williams ◽  
Ranjith Udawatta ◽  
Sidath Mendis ◽  
...  

&lt;p&gt;Changing weather patterns and anthropogenic land use change significantly alter the terrestrial water cycle. A key variable that modulates the water cycle on the land surface is soil moisture and its variability in time and space. Hydrological models are used to simulate key components of the water cycle including infiltration, soil storage and uptake by plants. However, uncertainties remain in accurately representing soil moisture dynamics in models. Here, with the aid of several sensors installed at a 30-ha experimental research facility, we attempt to quantify differences in soil water storage across multiple land use types &amp;#8211; cropped area, mosaic of turf grass and native plants, and an unkept weeded area as control land use. We will also discuss the accuracy of sensors to correctly measure soil water storage. Our study was conducted at an agricultural experimental station in Columbia, Missouri, USA. We use a variety of instruments to measure weather, evapotranspiration, and soil water. We used boundary layer scintillometers to measure near-surface turbulence, sensors to continuously track soil moisture and temperature, as well as weather stations for precipitation, air temperature, solar radiation and wind speed. &amp;#160;Changes in volumetric water content and soil temperature are measured at 5-minute intervals at 10-, 20-, and 40-cm soil depths to compare soil water storage among the three land use types. We also took soil samples before and after several storm events to calibrate the sensor readings at three sites. We, then, analyzed several storm events over a period of five months and compared the actual soil moisture and soil temperature dynamics at finer time intervals. With additional measurements of weather and boundary layer turbulence, we hope to reveal the landscape and weather control on soil moisture distribution across multiple land uses, and their subsequent impact on plant water uptake. Our preliminary results indicate that continuously disturbed agricultural lands depletes soil moisture at faster rates, which may present challenges in maintaining land productivity in the long term.&lt;/p&gt;


Author(s):  
Sumera Anwar ◽  
Yan Fei Liang ◽  
Shahbaz Khan ◽  
Zhi-qiang Gao

Dryland winter wheat in Loess Plateau is facing yield reduction due to shortage of soil moisture and delayed sowing time. Field experiment was conducted at Loess Plateau in Shanxi Province, China from 2012 to 2014, to study the effect of subsoiling and conventional tillage and different sowing dates on the soil water storage and contribution of N accumulation and remobilization to yield of winter wheat. The results showed that subsoiling significantly improved the soil water storage at 0-300 cm depth, improved the number of tillers and pre-anthesis N translocation in various organs of wheat and post-anthesis N accumulation, eventually increased the yield up to 17-36%. Delaying sowing time had reduced the soil water storage at sowing and winter accumulated temperature by about 180˚C. The contribution of N translocation to grain yield was maximum in glume+spike followed by in leaves and minimum by stem+sheath. In addition a close relationship was found between the N accumulation and translocation and the soil moisture in the 20-300 cm. Subsoiling during the fallow period and the medium sowing date was beneficial for improving the soil water storage and increased the N translocation to grain, thereby increasing the yield of wheat, especially in dry year.


2020 ◽  
Vol 8 (2) ◽  
pp. 2601-2610
Author(s):  
Buhari Umasugi ◽  
Sugeng Prijono ◽  
S Soemarno ◽  
A Ariffin

The biopore infiltration hole with organic material litter can increase the soil capacity to accommodate and store soil moisture. This study was aimed to determine the effect of biopores and organic material litter on soil moisture storage and the relationship of climatic conditions on soil moisture storage. The experiment was carried out on clove plantations on Ternate Island, North Maluku from December 2018 to February 2019. This study used a factorial randomized block design. The first factor was the biopores with a depth of 50 cm and 90 cm, and the second factor was 4 types of organic material litters in the form of nutmeg leaves, clove leaves, Guinea grass leaves and a mixture of clove leaves and Guinea grass. The factors observed were total soil water storage and at depths of 0-20, 20-40, 40-60 and 60-80 cm; organic matter content; C/N ratio and soil total N. Data analysis used the GenStat program with analysis of variance test (ANOVA) and Duncan's Multiple Distance Test. Results of the study showed that evaporation and percolation are climatic factors that affect water loss. Increase in soil water storage at 20-40 cm soil depth of 107.56 mm was yielded by the treatment of 50 cm biopore and Guinea grass leaf litter but it was not significantly different from the 50 cm biopore and clove leaf litter + chicken manure treatment. The treatment of biopore and organic material litter also increased the organic matter and soil total N and decreased the soil C/N ratio, but it did not have a significant effect.


1998 ◽  
Vol 2 (2/3) ◽  
pp. 239-255 ◽  
Author(s):  
P. de Rosnay ◽  
J. Polcher

Abstract. The aim of this paper is to improve the representation of root water uptake in the land surface scheme SECHIBA coupled to the LMD General Circulation Model (GCM). Root water uptake mainly results from the interaction between soil moisture and root profiles. Firstly, one aspect of the soil hydrology in SECHIBA is changed: it is shown that increasing the soil water storage capacity leads to a reduction in the frequency of soil water drought, but enhances the mean evapotranspiration. Secondly, the representation of the soil-vegetation interaction is improved by allowing a different root profile for each type of vegetation. The interaction between sub-grid scale variabilities in soil moisture and vegetation is also studied. The approach consists of allocating a separate soil water column to each vegetation type, thereby 'tiling' the grid square. However, the possibility of choosing the degree of soil moisture spatial heterogeneity is retained. These enhancements of the land surface system are compared within a number of GCM experiments.


Sign in / Sign up

Export Citation Format

Share Document