scholarly journals A Robust Discriminant Framework Based on Functional Biomarkers of EEG and Its Potential for Diagnosis of Alzheimer’s Disease

Healthcare ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 476
Author(s):  
Qi Ge ◽  
Zhuo-Chen Lin ◽  
Yong-Xiang Gao ◽  
Jin-Xin Zhang

(1) Background: Growing evidence suggests that electroencephalography (EEG), recording the brain’s electrical activity, can be a promising diagnostic tool for Alzheimer’s disease (AD). The diagnostic biomarkers based on quantitative EEG (qEEG) have been extensively explored, but few of them helped clinicians in their everyday practice, and reliable qEEG markers are still lacking. The study aims to find robust EEG biomarkers and propose a systematic discrimination framework based on signal processing and computer-aided techniques to distinguish AD patients from normal elderly controls (NC). (2) Methods: In the proposed study, EEG signals were preprocessed firstly and Maximal overlap discrete wavelet transform (MODWT) was applied to the preprocessed signals. Variance, Pearson correlation coefficient, interquartile range, Hoeffding’s D measure, and Permutation entropy were extracted as the input of the candidate classifiers. The AD vs. NC discriminant performance of each model was evaluated and an automatic diagnostic framework was eventually developed. (3) Results: A classification procedure based on the extracted EEG features and linear discriminant analysis based classifier achieved the accuracy of 93.18 ± 3.65 (%), the AUC of 97.92 ± 1.66 (%), the F-measure of 94.06 ± 4.04 (%), separately. (4) Conclusions: The developed discrimination framework can identify AD from NC with high performance in a systematic routine.

2021 ◽  
pp. 1-30
Author(s):  
Claudio Babiloni ◽  
Raffaele Ferri ◽  
Giuseppe Noce ◽  
Roberta Lizio ◽  
Susanna Lopez ◽  
...  

Background: In relaxed adults, staying in quiet wakefulness at eyes closed is related to the so-called resting state electroencephalographic (rsEEG) rhythms, showing the highest amplitude in posterior areas at alpha frequencies (8–13 Hz). Objective: Here we tested the hypothesis that age may affect rsEEG alpha (8–12 Hz) rhythms recorded in normal elderly (Nold) seniors and patients with mild cognitive impairment due to Alzheimer’s disease (ADMCI). Methods: Clinical and rsEEG datasets in 63 ADMCI and 60 Nold individuals (matched for demography, education, and gender) were taken from an international archive. The rsEEG rhythms were investigated at individual delta, theta, and alpha frequency bands, as well as fixed beta (14–30 Hz) and gamma (30–40 Hz) bands. Each group was stratified into three subgroups based on age ranges (i.e., tertiles). Results: As compared to the younger Nold subgroups, the older one showed greater reductions in the rsEEG alpha rhythms with major topographical effects in posterior regions. On the contrary, in relation to the younger ADMCI subgroups, the older one displayed a lesser reduction in those rhythms. Notably, the ADMCI subgroups pointed to similar cerebrospinal fluid AD diagnostic biomarkers, gray and white matter brain lesions revealed by neuroimaging, and clinical and neuropsychological scores. Conclusion: The present results suggest that age may represent a deranging factor for dominant rsEEG alpha rhythms in Nold seniors, while rsEEG alpha rhythms in ADMCI patients may be more affected by the disease variants related to earlier versus later onset of the AD.


2000 ◽  
Vol 11 (1) ◽  
pp. 29-35 ◽  
Author(s):  
Maarit Lehtovirta ◽  
Juhani Partanen ◽  
Mervi Könönen ◽  
Jaana Hiltunen ◽  
Seppo Helisalmi ◽  
...  

2021 ◽  
Vol 4 ◽  
Author(s):  
Fan Zhang ◽  
Melissa Petersen ◽  
Leigh Johnson ◽  
James Hall ◽  
Sid E. O’Bryant

Driven by massive datasets that comprise biomarkers from both blood and magnetic resonance imaging (MRI), the need for advanced learning algorithms and accelerator architectures, such as GPUs and FPGAs has increased. Machine learning (ML) methods have delivered remarkable prediction for the early diagnosis of Alzheimer’s disease (AD). Although ML has improved accuracy of AD prediction, the requirement for the complexity of algorithms in ML increases, for example, hyperparameters tuning, which in turn, increases its computational complexity. Thus, accelerating high performance ML for AD is an important research challenge facing these fields. This work reports a multicore high performance support vector machine (SVM) hyperparameter tuning workflow with 100 times repeated 5-fold cross-validation for speeding up ML for AD. For demonstration and evaluation purposes, the high performance hyperparameter tuning model was applied to public MRI data for AD and included demographic factors such as age, sex and education. Results showed that computational efficiency increased by 96%, which helped to shed light on future diagnostic AD biomarker applications. The high performance hyperparameter tuning model can also be applied to other ML algorithms such as random forest, logistic regression, xgboost, etc.


2021 ◽  
Author(s):  
Hessam Ahmadi ◽  
Emad Fatemizadeh ◽  
Ali Motie Nasrabadi

Abstract Neuroimaging data analysis reveals the underlying interactions in the brain. It is essential, yet controversial, to choose a proper tool to manifest brain functional connectivity. In this regard, researchers have not reached a definitive conclusion between the linear and non-linear approaches, as both have pros and cons. In this study, to evaluate this concern, the functional Magnetic Resonance Imaging (fMRI) data of different stages of Alzheimer’s disease are investigated. In the linear approach, the Pearson Correlation Coefficient (PCC) is employed as a common technique to generate brain functional graphs. On the other hand, for non-linear approaches, two methods including Distance Correlation (DC) and the kernel trick are utilized. By the use of the three mentioned routines and graph theory, functional brain networks of all stages of Alzheimer’s disease (AD) are constructed and then sparsed. Afterwards, graph global measures are calculated over the networks and a non-parametric permutation test is conducted. Results reveal that the non-linear approaches have more potential to discriminate groups in all stages of AD. Moreover, the kernel trick method is more powerful in comparison to the DC technique. Nevertheless, AD degenerates the brain functional graphs more at the beginning stages of the disease. At the first phase, both functional integration and segregation of the brain degrades, and as AD progressed brain functional segregation further declines. The most distinguishable feature in all stages is the clustering coefficient that reflects brain functional segregation.


Gene Families ◽  
2001 ◽  
pp. 29-38
Author(s):  
ROBERT W. GRACY ◽  
JOHN M. TALENT ◽  
CHRISTINA MALAKOWSKY ◽  
RACHEL DAWSON ◽  
PAM MARSHALL ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document