scholarly journals Accelerating Hyperparameter Tuning in Machine Learning for Alzheimer’s Disease With High Performance Computing

2021 ◽  
Vol 4 ◽  
Author(s):  
Fan Zhang ◽  
Melissa Petersen ◽  
Leigh Johnson ◽  
James Hall ◽  
Sid E. O’Bryant

Driven by massive datasets that comprise biomarkers from both blood and magnetic resonance imaging (MRI), the need for advanced learning algorithms and accelerator architectures, such as GPUs and FPGAs has increased. Machine learning (ML) methods have delivered remarkable prediction for the early diagnosis of Alzheimer’s disease (AD). Although ML has improved accuracy of AD prediction, the requirement for the complexity of algorithms in ML increases, for example, hyperparameters tuning, which in turn, increases its computational complexity. Thus, accelerating high performance ML for AD is an important research challenge facing these fields. This work reports a multicore high performance support vector machine (SVM) hyperparameter tuning workflow with 100 times repeated 5-fold cross-validation for speeding up ML for AD. For demonstration and evaluation purposes, the high performance hyperparameter tuning model was applied to public MRI data for AD and included demographic factors such as age, sex and education. Results showed that computational efficiency increased by 96%, which helped to shed light on future diagnostic AD biomarker applications. The high performance hyperparameter tuning model can also be applied to other ML algorithms such as random forest, logistic regression, xgboost, etc.

2020 ◽  
Vol 9 (7) ◽  
pp. 2146
Author(s):  
Gopi Battineni ◽  
Nalini Chintalapudi ◽  
Francesco Amenta ◽  
Enea Traini

Increasing evidence suggests the utility of magnetic resonance imaging (MRI) as an important technique for the diagnosis of Alzheimer’s disease (AD) and for predicting the onset of this neurodegenerative disorder. In this study, we present a sophisticated machine learning (ML) model of great accuracy to diagnose the early stages of AD. A total of 373 MRI tests belonging to 150 subjects (age ≥ 60) were examined and analyzed in parallel with fourteen distinct features related to standard AD diagnosis. Four ML models, such as naive Bayes (NB), artificial neural networks (ANN), K-nearest neighbor (KNN), and support-vector machines (SVM), and the receiver operating characteristic (ROC) curve metric were used to validate the model performance. Each model evaluation was done in three independent experiments. In the first experiment, a manual feature selection was used for model training, and ANN generated the highest accuracy in terms of ROC (0.812). In the second experiment, automatic feature selection was conducted by wrapping methods, and the NB achieved the highest ROC of 0.942. The last experiment consisted of an ensemble or hybrid modeling developed to combine the four models. This approach resulted in an improved accuracy ROC of 0.991. We conclude that the involvement of ensemble modeling, coupled with selective features, can predict with better accuracy the development of AD at an early stage.


Author(s):  
Adwait Patil

Abstract: Alzheimer’s disease is one of the neurodegenerative disorders. It initially starts with innocuous symptoms but gradually becomes severe. This disease is so dangerous because there is no treatment, the disease is detected but typically at a later stage. So it is important to detect Alzheimer at an early stage to counter the disease and for a probable recovery for the patient. There are various approaches currently used to detect symptoms of Alzheimer’s disease (AD) at an early stage. The fuzzy system approach is not widely used as it heavily depends on expert knowledge but is quite efficient in detecting AD as it provides a mathematical foundation for interpreting the human cognitive processes. Another more accurate and widely accepted approach is the machine learning detection of AD stages which uses machine learning algorithms like Support Vector Machines (SVMs) , Decision Tree , Random Forests to detect the stage depending on the data provided. The final approach is the Deep Learning approach using multi-modal data that combines image , genetic data and patient data using deep models and then uses the concatenated data to detect the AD stage more efficiently; this method is obscure as it requires huge volumes of data. This paper elaborates on all the three approaches and provides a comparative study about them and which method is more efficient for AD detection. Keywords: Alzheimer’s Disease (AD), Fuzzy System , Machine Learning , Deep Learning , Multimodal data


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7212
Author(s):  
Jungryul Seo ◽  
Teemu H. Laine ◽  
Gyuhwan Oh ◽  
Kyung-Ah Sohn

As the number of patients with Alzheimer’s disease (AD) increases, the effort needed to care for these patients increases as well. At the same time, advances in information and sensor technologies have reduced caring costs, providing a potential pathway for developing healthcare services for AD patients. For instance, if a virtual reality (VR) system can provide emotion-adaptive content, the time that AD patients spend interacting with VR content is expected to be extended, allowing caregivers to focus on other tasks. As the first step towards this goal, in this study, we develop a classification model that detects AD patients’ emotions (e.g., happy, peaceful, or bored). We first collected electroencephalography (EEG) data from 30 Korean female AD patients who watched emotion-evoking videos at a medical rehabilitation center. We applied conventional machine learning algorithms, such as a multilayer perceptron (MLP) and support vector machine, along with deep learning models of recurrent neural network (RNN) architectures. The best performance was obtained from MLP, which achieved an average accuracy of 70.97%; the RNN model’s accuracy reached only 48.18%. Our study results open a new stream of research in the field of EEG-based emotion detection for patients with neurological disorders.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Sergio Grueso ◽  
Raquel Viejo-Sobera

Abstract Background An increase in lifespan in our society is a double-edged sword that entails a growing number of patients with neurocognitive disorders, Alzheimer’s disease being the most prevalent. Advances in medical imaging and computational power enable new methods for the early detection of neurocognitive disorders with the goal of preventing or reducing cognitive decline. Computer-aided image analysis and early detection of changes in cognition is a promising approach for patients with mild cognitive impairment, sometimes a prodromal stage of Alzheimer’s disease dementia. Methods We conducted a systematic review following PRISMA guidelines of studies where machine learning was applied to neuroimaging data in order to predict whether patients with mild cognitive impairment might develop Alzheimer’s disease dementia or remain stable. After removing duplicates, we screened 452 studies and selected 116 for qualitative analysis. Results Most studies used magnetic resonance image (MRI) and positron emission tomography (PET) data but also magnetoencephalography. The datasets were mainly extracted from the Alzheimer’s disease neuroimaging initiative (ADNI) database with some exceptions. Regarding the algorithms used, the most common was support vector machine with a mean accuracy of 75.4%, but convolutional neural networks achieved a higher mean accuracy of 78.5%. Studies combining MRI and PET achieved overall better classification accuracy than studies that only used one neuroimaging technique. In general, the more complex models such as those based on deep learning, combined with multimodal and multidimensional data (neuroimaging, clinical, cognitive, genetic, and behavioral) achieved the best performance. Conclusions Although the performance of the different methods still has room for improvement, the results are promising and this methodology has a great potential as a support tool for clinicians and healthcare professionals.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Morshedul Bari Antor ◽  
A. H. M. Shafayet Jamil ◽  
Maliha Mamtaz ◽  
Mohammad Monirujjaman Khan ◽  
Sultan Aljahdali ◽  
...  

Alzheimer’s disease has been one of the major concerns recently. Around 45 million people are suffering from this disease. Alzheimer’s is a degenerative brain disease with an unspecified cause and pathogenesis which primarily affects older people. The main cause of Alzheimer’s disease is Dementia, which progressively damages the brain cells. People lost their thinking ability, reading ability, and many more from this disease. A machine learning system can reduce this problem by predicting the disease. The main aim is to recognize Dementia among various patients. This paper represents the result and analysis regarding detecting Dementia from various machine learning models. The Open Access Series of Imaging Studies (OASIS) dataset has been used for the development of the system. The dataset is small, but it has some significant values. The dataset has been analyzed and applied in several machine learning models. Support vector machine, logistic regression, decision tree, and random forest have been used for prediction. First, the system has been run without fine-tuning and then with fine-tuning. Comparing the results, it is found that the support vector machine provides the best results among the models. It has the best accuracy in detecting Dementia among numerous patients. The system is simple and can easily help people by detecting Dementia among them.


2020 ◽  
Vol 9 (3) ◽  
pp. 116-120
Author(s):  
Mansour Rezaei ◽  
Ehsan Zereshki ◽  
Soodeh Shahsavari ◽  
Mohammad Gharib Salehi ◽  
Hamid Sharini

Background: Alzheimer’s disease (AD) is the most common brain failure for which no cure has yet been found. The disease starts with a disturbance in the brain structure and then it manifests itself clinically. Therefore, by timely and correct diagnosis of changes in the structure of the brain, the occurrence of this disease or at least its progression can be prevented. Due to the fact that magnetic resonance imaging (MRI) can be used to obtain very useful information from the brain, and also because it is non-invasive, this method has been considered by researchers. Materials and Methods: The data were obtained from an MRI database (MIRIAD) of 69 subjects including 46 AD patients and 23 healthy controls (HC). Individuals were categorized based on two criteria including NINCDS-ADRAD and MMSE, as the gold standard. In this paper, we used the support vector machine (SVM) and Bayesian SVM classifiers. Results: Using the SVM classifier with Gaussian radial basis function (RBF) kernel, we distinguished AD and HC with an accuracy of 88.34%. The most important regions of interest (ROIs) in this study included right para hippocampal gyrus, left para hippocampal gyrus, right hippocampus, and left hippocampus. Conclusion: This study showed that the SVM model with Gaussian RBF kernel can distinguish AD from HC with high accuracy. These studies are of great importance in medical science. Based on the results of this study, MRI centers and neurologists can perform AD screening tests in people over the age of 50 years.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10549
Author(s):  
Qi Li ◽  
Mary Qu Yang

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder, accounting for nearly 60% of all dementia cases. The occurrence of the disease has been increasing rapidly in recent years. Presently about 46.8 million individuals suffer from AD worldwide. The current absence of effective treatment to reverse or stop AD progression highlights the importance of disease prevention and early diagnosis. Brain structural Magnetic Resonance Imaging (MRI) has been widely used for AD detection as it can display morphometric differences and cerebral structural changes. In this study, we built three machine learning-based MRI data classifiers to predict AD and infer the brain regions that contribute to disease development and progression. We then systematically compared the three distinct classifiers, which were constructed based on Support Vector Machine (SVM), 3D Very Deep Convolutional Network (VGGNet) and 3D Deep Residual Network (ResNet), respectively. To improve the performance of the deep learning classifiers, we applied a transfer learning strategy. The weights of a pre-trained model were transferred and adopted as the initial weights of our models. Transferring the learned features significantly reduced training time and increased network efficiency. The classification accuracy for AD subjects from elderly control subjects was 90%, 95%, and 95% for the SVM, VGGNet and ResNet classifiers, respectively. Gradient-weighted Class Activation Mapping (Grad-CAM) was employed to show discriminative regions that contributed most to the AD classification by utilizing the learned spatial information of the 3D-VGGNet and 3D-ResNet models. The resulted maps consistently highlighted several disease-associated brain regions, particularly the cerebellum which is a relatively neglected brain region in the present AD study. Overall, our comparisons suggested that the ResNet model provided the best classification performance as well as more accurate localization of disease-associated regions in the brain compared to the other two approaches.


2021 ◽  
Author(s):  
Sergio Grueso ◽  
Raquel Viejo-Sobera

Abstract Background: Increase in life-span in our society is a double-edged sword that entails a growing number of patients with neurocognitive disorders, Alzheimer’s disease being the most prevalent. Advances in medical imaging and computational power, enable new methods for early detection of neurocognitive disorders with the goal of preventing or reducing cognitive decline. Computer-aided image analysis and early detection of changes in cognition is a promising approach for patients with mild cognitive impairment, sometimes a prodromal stage of Alzheimer’s disease.Methods: We conducted a systematic review following PRISMA guidelines of studies where Machine Learning was applied to neuroimaging data in order to predict the progression from Mild Cognitive Impairment to Alzheimer’s disease. After removing duplicates, we screened 159 studies and selected 47 for a qualitative analysis. Results: Most studies used Magnetic Resonance Image and Positron Emission Tomography data but also Magnetoencephalography. The datasets were mainly extracted from the Alzheimer’s disease Neuroimage Initiative (ADNI) database with some exceptions. Regarding the algorithms used, the most common were support vector machines, but more complex models such as Deep Learning, combined with multimodal and multidimensional data (neuroimaging, clinical, cognitive, biological, and behavioral) achieved the best performance. Conclusions: Although performance of the different models still has room for improvement, the results are promising and this methodology has a great potential as a support tool for clinicians and healthcare professionals.


Recent research in computational engineering have evidenced the design and development numerous intelligent models to analyze medical data and derive inferences related to early diagnosis and prediction of disease severity. In this context, prediction and diagnosis of fatal neurodegenerative diseases that comes under the class of dementia from medical image data is considered as the challenging area of research for many researchers. Recently Alzheimer’s disease is considered as major category of dementia that affects major population. Despite of the development of numerous machine learning models for early diagnosis of Alzheimer’s disease, it is observed that there is a lot more scope of research. Addressing the same, this article presents a systematic literature review of machine learning techniques developed for early diagnosis of Alzheimer’s disease. Furthermore this article includes major categories of machine learning algorithms that include artificial neural networks, Support vector machines and Deep learning based ensemble models that helps the budding researchers to explore the scope of research in predicting Alzheimer’s disease. Implementation results depict the comparative analysis of state of art machine learning mechanisms.


2019 ◽  
Vol 9 (15) ◽  
pp. 3063
Author(s):  
Iman Beheshti ◽  
Hadi Mahdipour Hossein-Abad ◽  
Hiroshi Matsuda ◽  

Robust prediction of Alzheimer’s disease (AD) helps in the early diagnosis of AD and may support the treatment of AD patients. In this study, for early detection of AD and prediction of mild cognitive impairment (MCI) conversion, we develop an automatic computer-aided diagnosis (CAD) framework based on a merit-based feature selection method through a whole-brain voxel-wise analysis using baseline magnetic resonance imaging (MRI) data. We also explore the impact of different MRI spatial resolution on the voxel-wise metric AD classification and MCI conversion prediction. We assessed the proposed CAD framework using the whole-brain voxel-wise MRI features of 507 J-ADNI participants (146 healthy controls [HCs], 102 individuals with stable MCI [sMCI], 112 with progressive MCI [pMCI], and 147 with AD) among four clinically relevant pairs of diagnostic groups at different imaging resolutions (i.e., 2, 4, 8, and 16 mm). Using a support vector machine classifier through a 10-fold cross-validation strategy at a spatial resolution of 2 mm, the proposed CAD framework yielded classification accuracies of 91.13%, 74.77%, 81.12%, and 81.78% in identifying AD/healthy control, sMCI/pMCI, sMCI/AD, and pMCI/HC, respectively. The experimental results show that a lower spatial resolution (i.e., 2 mm) may provide more robust information to trace the neuronal loss-related brain atrophy in AD.


Sign in / Sign up

Export Citation Format

Share Document