scholarly journals A Direct Method for RT-PCR Detection of SARS-CoV-2 in Clinical Samples

Healthcare ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 37
Author(s):  
Sherif A. El-Kafrawy ◽  
Mai M. El-Daly ◽  
Ahmed M. Hassan ◽  
Reham M. Kaki ◽  
Adel M. Abuzenadah ◽  
...  

Introduction: the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic of acute respiratory disease (COVID-19). SARS-CoV-2 is a positive-strand RNA virus and its genomic characterization has played a vital role in the design of appropriate diagnostics tests. The current RT-PCR protocol for SARS-CoV-2 detects two regions of the viral genome, requiring RNA extraction and several hours. There is a need for fast, simple, and cost-effective detection strategies. Methods: we optimized a protocol for direct RT-PCR detection of SARS-CoV-2 without the need for nucleic acid extraction. Nasopharyngeal samples were diluted to 1:3 using diethyl pyrocarbonate (DEPC)-treated water. The diluted samples were incubated at 95 °C for 5 min in a thermal cycler, followed by a cooling step at 4 °C for 5 min. Samples then underwent reverse transcription real-time RT-PCR in the E and RdRp genes. Results: our direct detection protocol showed 100% concordance with the standard protocol with an average Ct value difference of 4.38 for the E region and 3.85 for the RdRp region. Conclusion: the direct PCR technique was found to be a reliable and sensitive method that can be used to reduce the time and cost of the assay by removing the need for RNA extraction. It enables the use of the assay in research, diagnostics, and screening for COVID-19 in regions with fewer economic resources, where supplies are more limited allowing for wider use for screening.

Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 615
Author(s):  
Allen Wing-Ho Chu ◽  
Cyril Chik-Yan Yip ◽  
Wan-Mui Chan ◽  
Anthony Chin-Ki Ng ◽  
Dream Lok-Sze Chan ◽  
...  

SARS-CoV-2 RT-PCR with pooled specimens has been implemented during the COVID-19 pandemic as a cost- and manpower-saving strategy for large-scale testing. However, there is a paucity of data on the efficiency of different nucleic acid extraction platforms on pooled specimens. This study compared a novel automated high-throughput liquid-based RNA extraction (LRE) platform (PHASIFYTM) with a widely used magnetic bead-based total nucleic acid extraction (MBTE) platform (NucliSENS® easyMAG®). A total of 60 pools of nasopharyngeal swab and 60 pools of posterior oropharyngeal saliva specimens, each consisting of 1 SARS-CoV-2 positive and 9 SARS-CoV-2 negative specimens, were included for the comparison. Real-time RT-PCR targeting the SARS-CoV-2 RdRp/Hel gene was performed, and GAPDH RT-PCR was used to detect RT-PCR inhibitors. No significant differences were observed in the Ct values and overall RT-PCR positive rates between LRE and MBTE platforms (92.5% (111/120] vs 90% (108/120]), but there was a slightly higher positive rate for LRE (88.3% (53/60]) than MBTE (81.7% (49/60]) among pooled saliva. The automated LRE method is comparable to a standard MBTE method for the detection of SAR-CoV-2 in pooled specimens, providing a suitable alternative automated extraction platform. Furthermore, LRE may be better suited for pooled saliva specimens due to more efficient removal of RT-PCR inhibitors.


2021 ◽  
Vol 8 ◽  
Author(s):  
Alfredo Garcia-Venzor ◽  
Bertha Rueda-Zarazua ◽  
Eduardo Marquez-Garcia ◽  
Vilma Maldonado ◽  
Angelica Moncada-Morales ◽  
...  

As to date, more than 49 million confirmed cases of Coronavirus Disease 19 (COVID-19) have been reported worldwide. Current diagnostic protocols use qRT-PCR for viral RNA detection, which is expensive and requires sophisticated equipment, trained personnel and previous RNA extraction. For this reason, we need a faster, direct and more versatile detection method for better epidemiological management of the COVID-19 outbreak. In this work, we propose a direct method without RNA extraction, based on the Loop-mediated isothermal amplification (LAMP) and Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR associated protein (CRISPR-Cas12) technique that allows the fast detection of SARS-CoV-2 from patient samples with high sensitivity and specificity. We obtained a limit of detection of 16 copies/μL with high specificity and at an affordable cost. The diagnostic test readout can be done with a real-time PCR thermocycler or with the naked eye in a blue-light transilluminator. Our method has been evaluated on a small set of clinical samples with promising results.


2020 ◽  
Vol 117 (37) ◽  
pp. 22727-22735 ◽  
Author(s):  
Anurup Ganguli ◽  
Ariana Mostafa ◽  
Jacob Berger ◽  
Mehmet Y. Aydin ◽  
Fu Sun ◽  
...  

The COVID-19 pandemic provides an urgent example where a gap exists between availability of state-of-the-art diagnostics and current needs. As assay protocols and primer sequences become widely known, many laboratories perform diagnostic tests using methods such as RT-PCR or reverse transcription loop mediated isothermal amplification (RT-LAMP). Here, we report an RT-LAMP isothermal assay for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus and demonstrate the assay on clinical samples using a simple and accessible point-of-care (POC) instrument. We characterized the assay by dipping swabs into synthetic nasal fluid spiked with the virus, moving the swab to viral transport medium (VTM), and sampling a volume of the VTM to perform the RT-LAMP assay without an RNA extraction kit. The assay has a limit of detection (LOD) of 50 RNA copies per μL in the VTM solution within 30 min. We further demonstrate our assay by detecting SARS-CoV-2 viruses from 20 clinical samples. Finally, we demonstrate a portable and real-time POC device to detect SARS-CoV-2 from VTM samples using an additively manufactured three-dimensional cartridge and a smartphone-based reader. The POC system was tested using 10 clinical samples, and was able to detect SARS-CoV-2 from these clinical samples by distinguishing positive samples from negative samples after 30 min. The POC tests are in complete agreement with RT-PCR controls. This work demonstrates an alternative pathway for SARS-CoV-2 diagnostics that does not require conventional laboratory infrastructure, in settings where diagnosis is required at the point of sample collection.


1999 ◽  
Vol 37 (3) ◽  
pp. 524-530 ◽  
Author(s):  
Arno C. Andeweg ◽  
Theo M. Bestebroer ◽  
Martijn Huybreghs ◽  
Tjeerd G. Kimman ◽  
Jan C. de Jong

This paper describes the development and evaluation of a new nested reverse transcription (RT)-PCR for the detection of rhinovirus in clinical samples. The nucleotide sequences of the 5′ noncoding regions of 39 rhinoviruses were determined in order to map the most conserved subregions. We designed a set of rhinovirus-specific primers and probes directed to these subregions and developed a new nested RT-PCR. The new assay includes an optimal RNA extraction method and amplicon identification with probe hybridization to discriminate between rhinoviruses and the closely related enteroviruses. It proved to be highly sensitive and specific. When tested on a dilution series of cultured viruses, the new PCR protocol scored positive at 10- to 100-fold-higher dilutions than a previously used nested RT-PCR. When tested on a collection of clinical samples obtained from 1,070 acute respiratory disease patients who had consulted their general practitioners, the new assay demonstrated a rhinovirus in 24% of the specimens, including all culture-positive samples, whereas the previously used PCR assay or virus culture detected a rhinovirus in only 3.5 to 6% of the samples. This new assay should help determine the disease burden associated with rhinovirus infections.


Author(s):  
Sofía N. Rodríguez Flores ◽  
Luis Mario Rodríguez-Martínez ◽  
Bernardita L. Reyes-Berrones ◽  
Nadia A. Fernández-Santos ◽  
Elthon J. Sierra-Moncada ◽  
...  

During the COVID-19 pandemic, a certified laboratory of Tamaulipas, Mexico has processed over 100,000 samples of COVID-19 suspected patients, working a minimum of 100 tests daily. Thus, it would be beneficial for such certified laboratories nationwide to reduce the time and cost involved in performing the diagnosis of COVID-19, from sample collection, transportation to local lab, processing of samples, and data acquisition. Here, 30 nasopharyngeal swab and saliva samples from the same COVID-19 individuals were assessed by a standard nucleic acid extraction protocol, including protein lysis with proteinase K followed by binding to column, washing, and elution, and by the SalivaDirect protocol based on protein lysis, skipping the other steps to reduce processing time and costs. The genomic RNA was amplified using a SARS-CoV-2 Real-Time PCR kit. A variation (P > 0.05) in the 95% CIs = 72.6%–96.7% was noted by using the SalivaDirect protocol and saliva samples (sensitivity of 88.2%) in comparison to those of standard protocol with oropharyngeal swab samples (95% CIs = 97.5%–100%; sensitivity of 100%) as reported elsewhere. However, when using nasopharyngeal swab samples in the SalivaDirect protocol (sensitivity of 93.6%; 95% CIs = 79.2%–99.2%), it was in concordance (P < 0.05) with those of the standard one. The logical explanation to this was that two samples with Ct values of 38, and 40 cycles for gene E produced two false negatives in the SalivaDirect protocol in relation to the standard one; thus, there was a reduction of the sensitivity of 6.4% in the overall assay performance.


2020 ◽  
Author(s):  
Xiong Ding ◽  
Kun Yin ◽  
Ziyue Li ◽  
Maroun M. Sfeir ◽  
Changchun Liu

AbstractQuantifying severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in clinical samples is crucial for assessing the infectivity of coronavirus disease 2019 and the efficacy of antiviral drugs. Here, we describe a digital warm-start CRISPR (WS-CRISPR) assay for sensitive quantitative detection of SARS-CoV-2 in clinical samples. The WS-CRISPR assay combines low-temperature reverse transcription dual-priming mediated isothermal amplification (RT-DAMP) and CRISPR-Cas12a-based detection in one-pot, attributed to the mediation role by pyrophosphatase and phosphorothioated primers. The WS-CRISPR assay is initiated at above 50 °C and overcomes undesired premature target amplification at room temperature, enabling accurate digital nucleic acid quantification. By targeting SARS-CoV-2’s nucleoprotein gene, digital WS-CRISPR assay is able to detect down to 5 copies/μl SARS-CoV-2 RNA in the chip within 90 minutes. It is clinically validated by quantitatively determining 32 clinical swab samples and three clinical saliva samples, showing 100% agreement with RT-PCR results. Moreover, the digital WS-CRISPR assay has been demonstrated to directly detect SARS-CoV-2 in heat-treated saliva samples without RNA extraction, showing high tolerance to inhibitors. Thus, the digital WS-CRISPR method, as a sensitive and reliable CRISPR assay, facilitates accurate SARS-CoV-2 detection toward digitized quantification.


2020 ◽  
Author(s):  
Nikhil S Sahajpal ◽  
Ashis K Mondal ◽  
Sudha Ananth ◽  
Allan Njau ◽  
Pankaj Ahluwali ◽  
...  

BackgroundThe limitations of widespread current COVID-19 diagnostic testing lie at both pre-analytical and analytical stages. Collection of nasopharyngeal swabs is invasive and is associated with exposure risk, high cost, and supply-chain constraints. Additionally, the RNA extraction in the analytical stage is the most significant rate-limiting step in the entire testing process. To alleviate these limitations, we developed a universal saliva processing protocol (SalivaSTAT) that would enable an extraction free RT-PCR test using any of the commercially available RT-PCR kits.MethodsWe optimized saliva collection devices, heat-shock treatment and homogenization. The effect of homogenization on saliva samples for extraction-free RT-PCR assay was determined by evaluating samples with and without homogenization and preforming viscosity measurements. Saliva samples (872) previously tested using the FDA-EUA method were reevaluated with the optimized SalivaSTAT protocol using two widely available commercial RT-PCR kits. Further, a five-sample pooling strategy was evaluated as per FDA guidelines using the SalivaSTAT protocol.ResultsThe saliva collection (done without any media) performed comparable to the FDA-EUA method. The SalivaSTAT protocol was optimized by incubating saliva samples at 95°C for 30-minutes and homogenization, followed by RT-PCR assay. The clinical sample evaluation of 630 saliva samples using the SalivaSTAT protocol with PerkinElmer (600-samples) and CDC (30-samples) RT-PCR assay achieved positive (PPA) and negative percent agreement (NPA) of 95.8% and 100%, respectively. The LoD was established as ∼20-60 copies/ml by absolute quantification. Further, a five-sample pooling evaluation using 250 saliva samples achieved a PPA and NPA of 92% and 100%, respectively.ConclusionWe have optimized an extraction-free direct RT-PCR assay for saliva samples that demonstrated comparable performance to FDA-EUA assay (Extraction and RT-PCR). The SalivaSTAT protocol is a rapid, sensitive, and cost-effective method that can be adopted globally, and has the potential to meet testing needs and may play a significant role in management of the current pandemic.


2014 ◽  
Vol 53 (1) ◽  
pp. 118-123 ◽  
Author(s):  
Margaret M. Williams ◽  
Thomas H. Taylor ◽  
David M. Warshauer ◽  
Monte D. Martin ◽  
Ann M. Valley ◽  
...  

Real-time PCR (rt-PCR) is an important diagnostic tool for the identification ofBordetella pertussis,Bordetella holmesii, andBordetella parapertussis. Most U.S. public health laboratories (USPHLs) target IS481, present in 218 to 238 copies in theB. pertussisgenome and 32 to 65 copies inB. holmesii. The CDC developed a multitarget PCR assay to differentiateB. pertussis,B. holmesii, andB. parapertussisand provided protocols and training to 19 USPHLs. The 2012 performance exercise (PE) assessed the capability of USPHLs to detect these threeBordetellaspecies in clinical samples. Laboratories were recruited by the Wisconsin State Proficiency Testing program through the Association of Public Health Laboratories, in partnership with the CDC. Spring and fall PE panels contained 12 samples each of viableBordetellaand non-Bordetellaspecies in saline. Fifty and 53 USPHLs participated in the spring and fall PEs, respectively, using a variety of nucleic acid extraction methods, PCR platforms, and assays. Ninety-six percent and 94% of laboratories targeted IS481in spring and fall, respectively, in either singleplex or multiplex assays. In spring and fall, respectively, 72% and 79% of USPHLs differentiatedB. pertussisandB. holmesiiand 68% and 72% identifiedB. parapertussis. IS481cycle threshold (CT) values forB. pertussissamples had coefficients of variation (CV) ranging from 10% to 28%. Of the USPHLs that differentiatedB. pertussisandB. holmesii, sensitivity was 96% and specificity was 95% for the combined panels. The 2012 PE demonstrated increased harmonization of rt-PCRBordetelladiagnostic protocols in USPHLs compared to that of the previous survey.


2009 ◽  
Vol 58 (9) ◽  
pp. 1168-1172 ◽  
Author(s):  
J.-N. Telles ◽  
K. Le Roux ◽  
P. Grivard ◽  
G. Vernet ◽  
A. Michault

The Chikungunya virus (CHIKV) is a member of the genus Alphavirus that is transmitted to humans by Aedes mosquitoes. In 2005 and 2006, the Indian Ocean island of La Réunion was hit with an unprecedented CHIKV fever outbreak that infected 300 000 people. In the present study, we describe the evaluation of real-time nucleic acid sequence-based amplification (RT-NASBA) for the detection of CHIKV in clinical samples. A co-extracted and co-amplified chimerical CHIKV RNA sequence was used as an internal control to eliminate false-negative results. The detection threshold of the assay was determined from quantified CHIKV-positive plasma, and estimated to be 200 copies per NASBA reaction. The specificity of the assay was determined using blast analyses and non-cross-reactivity using an O'nyong-nyong virus culture and 250 CHIKV RT-PCR-negative plasma samples. A 100 % specificity was found and no invalid result was obtained, showing the good quality of the nucleic acid extraction. The assay was then evaluated using 252 CHIKV-positive RT-PCR plasma samples. The samples were all tested positive, including those with low viral load. This evaluation showed that the RT-NASBA is a rapid (5 h from sample nucleic acid extraction to detection), sensitive, specific and reliable method for the routine diagnosis of CHIKV in clinical samples.


Sign in / Sign up

Export Citation Format

Share Document