scholarly journals Clouds-Based Collaborative and Multi-Modal Mixed Reality for Virtual Heritage

Heritage ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 1447-1459
Author(s):  
Mafkereseb Kassahun Bekele

Recent technological advancements in immersive reality technologies have become a focus area in the virtual heritage (VH) domain. In this regard, this paper attempts to design and implement clouds-based collaborative and multi-modal MR application aiming at enhancing cultural learning in VH. The design and implementation can be adopted by the VH domain for various application themes. The application utilises cloud computing and immersive reality technologies. The use of cloud computing, collaborative, and multi-modal interaction methods is influenced by the following three issues. First, studies show that users’ interaction with immersive reality technologies and virtual environments determines their learning outcome and the overall experience. Second, studies also demonstrate that collaborative and multi-modal interaction methods enable engagement in immersive reality environments. Third, the integration of immersive reality technologies with traditional museums and cultural heritage sites is getting significant attention in the domain. However, a robust approach, development platforms (frameworks) and easily adopted design and implementation approaches, or guidelines are not commonly available to the VH community. This paper, therefore, will attempt to achieve two major goals. First, it attempts to design and implement a novel application that integrates cloud computing, immersive reality technology and VH. Second, it attempts to apply the proposed application to enhance cultural learning. From the perspective of cultural learning and users’ experience, the assumption is that the proposed approach (clouds-based collaborative and multi-modal MR) can enhance cultural learning by (1) establishing a contextual relationship and engagement between users, virtual environments and cultural context in museums and heritage sites, and (2) by enabling collaboration between users.

2021 ◽  
Vol 5 (12) ◽  
pp. 79
Author(s):  
Mafkereseb Kassahun Bekele ◽  
Erik Champion ◽  
David A. McMeekin ◽  
Hafizur Rahaman

Studies in the virtual heritage (VH) domain identify collaboration (social interaction), engagement, and a contextual relationship as key elements of interaction design that influence users’ experience and cultural learning in VH applications. The purpose of this study is to validate whether collaboration (social interaction), engaging experience, and a contextual relationship enhance cultural learning in a collaborative and multi-modal mixed reality (MR) heritage environment. To this end, we have designed and implemented a cloud-based collaborative and multi-modal MR application aiming at enhancing user experience and cultural learning in museums. A conceptual model was proposed based on collaboration, engagement, and relationship in the context of MR experience. The MR application was then evaluated at the Western Australian Shipwrecks Museum by experts, archaeologists, and curators from the gallery and the Western Australian Museum. Questionnaire, semi-structured interview, and observation were used to collect data. The results suggest that integrating collaborative and multi-modal interaction methods with MR technology facilitates enhanced cultural learning in VH.


2020 ◽  
Vol 43 ◽  
Author(s):  
Michael Lifshitz ◽  
T. M. Luhrmann

Abstract Culture shapes our basic sensory experience of the world. This is particularly striking in the study of religion and psychosis, where we and others have shown that cultural context determines both the structure and content of hallucination-like events. The cultural shaping of hallucinations may provide a rich case-study for linking cultural learning with emerging prediction-based models of perception.


Author(s):  
Aleshia T. Hayes ◽  
Carrie L. Straub ◽  
Lisa A. Dieker ◽  
Charlie E. Hughes ◽  
Michael C. Hynes

New and emerging technology in the field of virtual environments has permitted a certain malleability of learning milieus. These emerging environments allow learning and transfer through interactions that have been intentionally designed to be pleasurable experiences. TLE TeachLivE™ is just such an emerging environment that engages teachers in practice on pedagogical and content aspects of teaching in a simulator. The sense of presence, engagement, and ludus of TLE TeachLivE™ are derived from the compelling Mixed Reality that includes components of off-the shelf and emerging technologies. Some of the noted features that have been identified relevant to the ludic nature of TeachLivE include the flow, fidelity, unpredicability, suspension of disbelief, social presence, and gamelike elements. This article explores TLE TeachLivE™ in terms of the ludology, paideic user experience, the source of the ludus, and outcomes of the ludic nature of the experience.


2012 ◽  
Vol 2 (2) ◽  
pp. 15 ◽  
Author(s):  
Frederico Menine Schaf ◽  
Suenoni Paladini ◽  
Carlos Eduardo Pereira

<span style="color: #000000;"><span style="font-family: Times New Roman,serif;"><span style="font-size: x-small;">Recent evolutions of social networks, virtual environments, Web technologies and 3D virtual worlds motivate the adoption of new technologies in education, opening successive innovative possibilities. These technologies (or tools) can be employed in distance education scenarios, or can also enhance traditional learning-teaching (blended or hybrid learning scenario). It is known and a wide advocated issue that laboratory practice is essential to technical education, foremost in engineering. In order to develop a feasible implementation to this research area, a prototype was developed, called 3DAutoSysLab, in which a metaverse is used as social collaborative interface, experiments (real or simulated) are linked to virtual objects, learning objects are displayed as interactive medias, and guiding/feedback are supported via an autonomous tutoring system based on user's interaction data mining. This prototype is under test, but preliminary applied results indicate great acceptance and increase of motivation of students.</span></span></span>


Author(s):  
Randall Spain ◽  
Benjamin Goldberg ◽  
Jeffrey Hansberger ◽  
Tami Griffith ◽  
Jeremy Flynn ◽  
...  

Recent advances in technology have made virtual environments, virtual reality, augmented reality, and simulations more affordable and accessible to researchers, companies, and the general public, which has led to many novel use cases and applications. A key objective of human factors research and practice is determining how these technology-rich applications can be designed and applied to improve human performance across a variety of contexts. This session will demonstrate some of the distinct and diverse uses of virtual environments and mixed reality environments in an alternative format. The session will begin with each demonstrator providing a brief overview of their virtual environment (VE) and a description of how it has been used to address a particular problem or research need. Following the description portion of the session, each VE will be set-up at a demonstration station in the room, and session attendees will be encouraged to directly interact with the virtual environment and ask demonstrators questions about their research and inquire about the effectiveness of using VE for research, training, and evaluation purposes. The overall objective of this alternative session is to increase the awareness of how human factors professionals use VE technologies and increase the awareness of the capabilities and limitations of VE in supporting the work of HF professionals.


2013 ◽  
Vol 10 (2) ◽  
pp. 703-724 ◽  
Author(s):  
Taerim Lee ◽  
Hun Kim ◽  
Kyung-Hyune Rhee ◽  
Uk Shin

Recently, as IT Compliance becomes more diverse, companies have to take a great amount of effort to comply with it and prepare countermeasures. Especially, E-Discovery is also one of the most notable compliances for IT and law. In order to minimize the time and cost for E-Discovery, many service systems and solutions using the state-of-the-art technology have been competitively developed. Among them, Cloud Computing is one of the most exclusive skills as a computing infrastructure for E-Discovery Service. Unfortunately, these products actually do not cover all kinds of E-Discovery works and have many drawbacks as well as considerable limitations. This paper, therefore, proposes a new type of E-Discovery Service Structure based on Cloud Computing called EDaaS(E-Discovery as a Service) to make the best usage of its advantages and overcome the limitations of the existing E-Discovery solutions. EDaaS enables E-Discovery participants to smoothly collaborate by removing constraints on working places and minimizing the number of direct contact with target systems. What those who want to use the EDaaS need is only a network device for using the Internet. Moreover, EDaaS can help to reduce the waste of time and human resources because no specific software to install on every target system is needed and the relatively exact time of completion can be obtained from it according to the amount of data for the manpower control. As a result of it, EDaaS can solve the litigant?s cost problem.


Sign in / Sign up

Export Citation Format

Share Document