scholarly journals Aerated Irrigation and Pruning Residue Biochar on N2O Emission, Yield and Ion Uptake of Komatsuna

Horticulturae ◽  
2018 ◽  
Vol 4 (4) ◽  
pp. 33
Author(s):  
Aung Oo ◽  
Shigeto Sudo ◽  
Shoji Matsuura ◽  
Khin Win ◽  
Takeru Gonai

After irrigation in intensive vegetable cultivation, the soil is filled with water leading to reduced oxygen content of the soil air which will affect vegetable growth and soil N2O emission. In this study, the effect of aerated irrigation and residue biochar on soil N2O emission, yield, and ion uptake of komatsuna grown in Andosol was explored. The experiment included four treatments; control (tap water irrigation), aerated water irrigation, pruning residue biochar with tap water irrigation, and a combination of aerated irrigation and biochar. The results showed that aerated irrigation had no effect on plant growth, but it also increased N2O emission by 12.3% for several days after planting. Plant ion uptake was not affected by aerated irrigation. Biochar amendment increased shoot dry weight and significantly reduced soil N2O emission by 27.9% compared with the control. Plant uptake of N and K also increased with biochar. This study showed that pruning residue biochar has the potential to mitigate N2O emission while increasing vegetable growth and plant nutrient uptake. However, the study soil, Andosol, already has high soil porosity with low bulk density. Thus, further injection of air through irrigation showed no effect on plant growth but increased N2O emission, hence soil aeration was not a limiting factor in Andosol.

2020 ◽  
Vol 38 (2) ◽  
pp. 63-67
Author(s):  
Amanda Bayer

Abstract Reduced irrigation (RI) can conserve water and control plant growth; however, the timing of RI applications can impact plant growth and flowering. The goal of this research was to quantify growth of Salvia nemorosa L. ‘Ostfrieland' (East Friesland) in response to RI. A soil-moisture sensor automated irrigation system was used to apply four irrigation treatments: RI and well-watered (WW) controls (20% and 38% substrate water content) and two combination treatments to apply RI for either the first two weeks (20% followed by 38%, RIWW ) or final four weeks (38% followed by 20%, WWRI ) of the six-week study. Flower number, height, compactness, and relative chlorophyll content (SPAD) were not different across treatments. Average flower stem length was greater for the WW and RIWW treatments than for the RI treatment. Shoot dry weight was less for the RI treatment compared to the WW and RIWW treatments, respectively]. Cumulative irrigation volume was lowest for the RI treatment and highest for the RIWW treatment. Visually, plants in the RIWW treatment had an open, floppy habit that would likely negatively impact sales in a retail setting. Plants in the RI treatment were smaller, but visually appealing. Index words: soil moisture sensor, plant production, herbaceous perennial, container plants. Species used in this study: ‘Ostfrieland' salvia (Salvia nemorosa L.).


2020 ◽  
Vol 30 (3) ◽  
pp. 315-321 ◽  
Author(s):  
Amanda Bayer

Reduced irrigation (RI) can be used to reduce irrigation volume as well as to control plant growth. The timing and duration of RI applications can affect overall plant growth and flowering. Knowledge of plant response to RI can allow growers to control growth and plant form. The objective of this study was to quantify flower and overall plant growth of ‘PAS702917’coneflower (Echinacea purpurea) and ‘Helbro’ sneezeweed (Helenium hybrida) in response to RI. A soil-moisture sensor automated irrigation system was used to apply four irrigation treatments: RI and well-watered (WW) controls (25% or 38%) and two alternating treatments to apply RI for either the first 2 weeks (25% followed by 38%, RIWW treatment) or final 4 weeks (38% followed by 25%, WWRI treatment) of the 6-week study. For the sneezeweed experiment, RI was reduced to 20%. For coneflower, peduncle length was greater for the WW (36.8 cm) and RIWW treatments (35.7 cm) than the RI (27.0 cm) and WWRI treatments (26.6 cm). Shoot dry weight, compactness, leaf area, and flower number were not significant. For sneezeweed, WW plants were taller (57.2 cm) and had greater shoot dry weight (49.8 g) than plants in other treatments. WW plants also had more flowers (99) than WWRI (63) and RI (67) plants, which were more compact. Total leaf area did not differ between treatments for either species. Total irrigation volume was greatest for WW plants (5.2 and 15.1 L/plant for coneflower and sneezeweed, respectively), with RI at any point during the experiment resulting in water savings.


Author(s):  
Mahmoud Ahmed Touny El-Dabaa ◽  
Hassan Abd-El-Khair

Abstract Background Orobanche crenata is an obligate root parasite belonging to Orbanchaceae. Broomrape causes great damage to the faba bean. Several attempts were applied for controlling parasitic weeds. So, the aim of this work is to study the application of Trichoderma spp. as well as three rhizobacteria species in comparison to herbicidal effect of Glyphosate (Glialka 48% WSC) for controlling broomrape infesting faba bean (Vicia faba). Materials and methods Three pot experiments were carried out in the greenhouse of the National Research Centre, Dokki, Giza, Egypt during two successive winter seasons. Trichoderma inocula were adjusted to 3.6 × 108 propagules/ml and the bacterium inocula were adjusted at 107–109 colony-forming unit (CFU)/ml. All treatments were applied, before 1 week of sowing, at rate of 50 ml per pot in experiments I and II, while 100 ml per pot in experiment III. Results Trichoderma spp. (T. harzianum, T. viride and T. vierns) as well as three rhizobacteria species (Pseudomonas fluorescens, Bacillus subtilis and Bacillus pumilus) enhanced the growth parameters in faba bean plants, i.e. shoot length, shoot fresh weight, shoot dry weight and leaf number in the first experiment when applied without O. crenata infection. In the second experiment, all bio-control could protect plants against O. crenata infection, where it had better juvenile number reduction, than glyphosate after 2 months of application. Both B. subtilis and B. pumilus had the highest reduction to juvenile fresh weight, while their effect was equal to herbicide for juvenile dry weight, respectively. The bio-control agents had high effects until the 4th month, but it was less than that of the herbicide. In experiment III, the bio-control agents could highly reduce the juvenile parameters after 2 months, as well as juvenile fresh weight and juvenile dry weight after 4 months, than the herbicide, respectively. The bio-control agents were effective until 6 months, but less than the herbicide effect. All bio-control treatments highly increased the plant growth parameters, than the herbicide. Conclusion The application of Trichoderma spp. as well as rhizobacteria species could play an important role in controlling broomrape in faba bean as a natural bioherbicide.


2016 ◽  
Vol 5 (2) ◽  
pp. 104
Author(s):  
Helale Bahrami ◽  
Amir Ostadi Jafari ◽  
Jamshid Razmjoo

<p class="emsd-body"><span lang="EN-GB">Seeds of ten sesame cultivars (Karaj, Darab, Safiabad, Jiroft, Borazjan, Yellow-white, Felestin, Ultan, Isfahan and Abpakhsh) were sown into soil filled pots in 2008 and 2009. Pots were watered with six levels of salts (0.0038 (tap water as control), 4.89, 8.61, 10.5, 14.54, 17.74 ds.m<sup>-1</sup> NaCl) until full maturity. Plant height, root and shoot dry weight, yield and yield components, seed oil and protein contents of cultivars were measured. Increasing salinity caused significant reduction in plant height, root and shoot dry weight, yield and yield components, seed oil and protein contents of all cultivars. However, there were significant differences among the cultivars for measured traits for each salinity level. Based on seed oil yield data, Safiabad and Kraj at 0.0038ds.m<sup>-1</sup>, Safiabad and Ultan at 4.89ds.m<sup>-1</sup>, Ultan, Safiabad and Darab at 8.61 salinity levels were the superior cultivars. High variability in tolerance to salinity among the tested sesame cultivars suggests that selection of more salt tolerant cultivars for planting or breeding purposes is possible.</span></p><p class="emsd-body"><span lang="EN-GB">Highlights</span></p><p class="emsd-body"><span lang="EN-GB">Effects of contrasting salinity levels (0.0038 (tap water as control), 4.89, 8.61, 10.5, 14.54, 17.74 ds.m<sup>-1</sup>NaCl) on sesame cultivars were tested. Salinity reduced plant growth and yield and seed oil and protein contents. However, there were significant differences among the cultivars for measured traits for each salinity level. </span></p>


2021 ◽  
Author(s):  
Leila Tabande ◽  
Mozhgan Sepehri ◽  
Jafar Yasrebi ◽  
Mehdi Zarei ◽  
Reza Ghasemi-Fasaei ◽  
...  

Abstract Zinc oxide nanoparticles (ZnO-NPs) are among the most commonly used nano-fertilizers (NF). However, elevated levels of ZnO-NPs in soil may affect plant growth and development due to its potential toxicity when accumulated in large amounts in plant tissues. This research was conducted using an in situ rhizobox system with the aims of evaluating Zinc uptake from nano-zinc oxide amended rhizosphere soil by alfalfa plant and the effect of plant growth promoting microorganisms on alleviating the phytotoxicity of ZnO-NPs. Treatments included microbial inoculations (Sinorhizobium meliloti, Serendipita indica) and different ZnO-NPs concentrations (0, 400 and 800 mg Kg− 1) with three replications. The results indicated that S. indica minimized the phytotoxicity of ZnO-NPs to alfalfa by enhancing growth rate and decreasing Zinc (Zn) translocation from root to shoot. Compared with plants inoculated with S. meliloti, co-inoculation with S. indica increased the shoot dry weight by 18.33% and 8.05% at 400 and 800 mg Kg− 1ZnO-NPs. However, at the highest level of ZnO-NPs (800 mg kg− 1), root inoculation of S. indica and S. indica + S. meliloti decreased Zn transfer factor by 60.2% and 44.3% compared to S. meliloti, respectively. Furthermore, a distinct relation between tolerance of S. indica-colonized plant to ZnO-NPs and the ability of S. indica in inhibiting or retarding degradation of polyunsaturated lipids through prevention of excess reactive oxygen species formation was observed. Malondialdehyde content of inoculated plants with S. indica either alone or in combination with S. meliloti was significantly lower than non-inoculated plants (p < 0.01). Zn-induced oxidative stress was mitigated by S. indica through enhanced activities of catalase and peroxidase enzymes. The findings of the present study indicate the potential use of endophytes fungus S. indica for ensuring food safety and security, and human health in heavy metal–polluted soil by reducing the phytoavailability of heavy metals in the aerial parts of the host plants.


mSphere ◽  
2020 ◽  
Vol 5 (4) ◽  
Author(s):  
Dario X. Ramirez-Villacis ◽  
Omri M. Finkel ◽  
Isai Salas-González ◽  
Connor R. Fitzpatrick ◽  
Jeffery L. Dangl ◽  
...  

ABSTRACT Glyphosate is a commonly used herbicide with a broad action spectrum. However, at sublethal doses, glyphosate can induce plant growth, a phenomenon known as hormesis. Most glyphosate hormesis studies have been performed under microbe-free or reduced-microbial-diversity conditions; only a few were performed in open systems or agricultural fields, which include a higher diversity of soil microorganisms. Here, we investigated how microbes affect the hormesis induced by low doses of glyphosate. To this end, we used Arabidopsis thaliana and a well-characterized synthetic bacterial community of 185 strains (SynCom) that mimics the root-associated microbiome of Arabidopsis. We found that a dose of 3.6 × 10−6 g acid equivalent/liter (low dose of glyphosate, or LDG) produced an ∼14% increase in the shoot dry weight (i.e., hormesis) of uninoculated plants. Unexpectedly, in plants inoculated with the SynCom, LDG reduced shoot dry weight by ∼17%. We found that LDG enriched two Firmicutes and two Burkholderia strains in the roots. These specific strains are known to act as root growth inhibitors (RGI) in monoassociation assays. We tested the link between RGI and shoot dry weight reduction in LDG by assembling a new synthetic community lacking RGI strains. Dropping RGI strains out of the community restored growth induction by LDG. Finally, we showed that individual RGI strains from a few specific phyla were sufficient to switch the response to LDG from growth promotion to growth inhibition. Our results indicate that glyphosate hormesis was completely dependent on the root microbiome composition, specifically on the presence of root growth inhibitor strains. IMPORTANCE Since the introduction of glyphosate-resistant crops, glyphosate has become the most common and widely used herbicide around the world. Due to its intensive use and ability to bind to soil particles, it can be found at low concentrations in the environment. The effect of these remnants of glyphosate in plants has not been broadly studied; however, glyphosate 1,000 to 100,000 times less concentrated than the recommended field dose promoted growth in several species in laboratory and greenhouse experiments. However, this effect is rarely observed in agricultural fields, where complex communities of microbes have a central role in the way plants respond to external cues. Our study reveals how root-associated bacteria modulate the responses of Arabidopsis to low doses of glyphosate, shifting between growth promotion and growth inhibition.


Weed Science ◽  
1997 ◽  
Vol 45 (3) ◽  
pp. 397-403
Author(s):  
David A. Wall

Greenhouse studies suggested that dog mustard was less competitive than wheat, but of similar competitiveness to flax. In field studies, dog mustard growth and development were markedly affected by crop competition. Competition from flax and wheat reduced dog mustard leaf area, shoot dry weight, plant height, and seed production compared with the weed grown on summer-fallow. Dog mustard was a prolific seed producer when grown in the absence of interspecific competition. On summer-fallow, dog mustard produced as many as 79,100 seeds plant−1when moisture was not a limiting factor. However, average seed production was 19,400 and 8000 seeds plant−1in 1994 and 1995, respectively.


Biocelebes ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 1-9
Author(s):  
Wahyu Harso ◽  
Isna Isna ◽  
Yusran Yusran

Arbsucular mycorrhizal fungi promote plant growth by enhancing mineral uptake. Contribution degree of arbuscular mycorrhizal fungi to promote plant growth depend on species of plant-fungus association. The aim of this study was to compare the ability of three species of Glomus to promote maize plant growth. Maize plants were inoculated with 20 g inoculum of either Glomus deserticola, Glomus etunicatum, or Glomus clorum.  Inoculum was soil containing spore, hyphae and infected root. Maize plants without addition inoculum were also used as a control. Water availability in the soil as growing medium was maintained on 40% field capacity. The results showed that addition of inoculum from three species of Glomus increased average of maize plant shoot dry weight  although there was no statisticaly significant differences.  Maize plant inoculated with G. clorum had higher shoot dry weight than maize plant inoculated either with G. etunicatum or G. deserticola while root colonization by G. clorum was lowest.


2019 ◽  
Vol 67 (4) ◽  
Author(s):  
Felipe Romero-Perdomo ◽  
Jhonnatan Ocampo-Gallego ◽  
Mauricio Camelo-Rusinque ◽  
Ruth Bonila

In this study, we aimed at examining the potential to stimulate growth in Pennisetum clandestinum using four isolated bacterial strains from soils obtained from a Colombian tropical silvopastoral system. We previously identified genetically the strains and characterized two plant growth promotion activities. We found that the four bacterial strains were phylogenetically associated with Klebsiella sp. (strains 28P and 35P), Beijerinka sp. (37L) and Achromobacter xylosoxidans (E37), based on partial 16S rRNA gene sequencing. Moreover, the in vitro biochemical assays demonstrated that the strains exhibited some plant growth promotion mechanisms such as 1-aminocyclopropane-1-carboxylic acid deaminase activity and indole compound synthesis. Notably, bacterial inoculation under greenhouse conditions showed a positive influence on P. clandestinum growth. We found a significant (p < 0.05) effect on root and shoot length, and shoot dry weight. Shoot length increased by 52% and 30% with 37L and 35P, respectively, compared to those without inoculation treatment. Similarly, the use of 37L and 28P raised shoot dry weight values by 170% and 131%, respectively. In root development, inoculation with strains 37L and E37 increased root length by 134% and 100%, respectively. Beijerinckia sp. 37L was the most effective of the four strains at increasing P. clandestinum biomass and length.


2007 ◽  
Vol 25 (2) ◽  
pp. 89-94 ◽  
Author(s):  
Genhua Niu ◽  
Denise S. Rodriguez ◽  
Yin-Tung Wang

Abstract A study was conducted to characterize the response of Gaillardia aristata Pursh to salinity (0.8, 2.0 or 4.0 dS/m) and growing media: 100% perlite (Perlite), 100% Sunshine Mix No. 4 (Mix), 1 to 1 (by vol) perlite and Sunshine Mix No. 4 (Perlite Mix), or 1 to 1 Sunshine Mix No. 4 and composted mulch (Mix Mulch). Type of medium did not influence shoot dry weight (DW). However, root to shoot DW ratio was highest for plants grown in Perlite. Shoot DW of plants irrigated with tap water (0.8 dS/m) was higher compared to those irrigated with saline solution at 2.0 or 4.0 dS/m, except for those grown in Mix. Salinity did not alter the root to shoot DW ratio. In general, elevated salinity led to relatively short plants. Plants were taller when grown in Perlite or Mix Mulch with fewer lateral shoots compared to plants grown in Mix and Perlite Mix. Flower bud abortion occurred in plants grown in Mix or Perlite Mix, while this phenomenon was not observed in plants grown in Perlite or Mix Mulch. Overall, plants performed better in Perlite and Mix Mulch than Mix and Perlite Mix.


Sign in / Sign up

Export Citation Format

Share Document