scholarly journals BrPARP1, a Poly (ADP-Ribose) Polymerase Gene, Is Involved in Root Development in Brassica rapa under Drought Stress

Horticulturae ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 78
Author(s):  
Gangqiang Cao ◽  
Wenjing Jiang ◽  
Gongyao Shi ◽  
Zhaoran Tian ◽  
Jingjing Shang ◽  
...  

PARP proteins are highly conserved homologs among the eukaryotic poly (ADP-ribose) polymerases. After activation, ADP-ribose polymers are synthesized on a series of ribozymes that use NAD+ as a substrate. PARPs participate in the regulation of various important biological processes, such as plant growth, development, and stress response. In this study, we characterized the homologue of PARP1 in B. rapa using RNA interference (RNAi) to reveal the underlying mechanism responding to drought stress. Bioinformatics and expression pattern analyses demonstrated that two copy numbers of PARP1 genes (BrPARP1.A03 and BrPARP1.A05) in B. rapa following a whole-genome triplication (WGT) event were retained compared with Arabidopsis, but only BrPARP1.A03 was predominantly transcribed in plant roots. Silencing of BrPARP1 could markedly promote root growth and development, probably via regulating cell division, and the transgenic Brassica lines showed more tolerance under drought treatment, accompanied with substantial alterations including accumulated proline contents, significantly reduced malondialdehyde, and increased antioxidative enzyme activity. In addition, the findings showed that the expression of stress-responsive genes, as well as reactive oxygen species (ROS)-scavenging related genes, was largely reinforced in the transgenic lines under drought stress. In general, these results indicated that BrPARP1 likely responds to drought stress by regulating root growth and the expression of stress-related genes to cope with adverse conditions in B. rapa.

2019 ◽  
Author(s):  
Pincang Zhao ◽  
Shenglin Hou ◽  
xiufang guo ◽  
Junting Jia ◽  
Weiguang Yang ◽  
...  

Abstract Background Drought is one of the most serious factors limiting plant growth and production. Sheepgrass can adapt well to various adverse conditions, including drought. However, during germination, sheepgrass young seedlings are sensitive to these adverse conditions. Therefore, the adaptability of seedlings is very important for plant survival, especially in plants that inhabit grasslands or the construction of artificial grassland. Results In this study, we found a sheepgrass MYB-related transcription factor, LcMYB2 that is up-regulated by drought stress and returns to a basal level after rewatering. The expression of LcMYB2 was mainly induced by osmotic stress and was localized to the nucleus. Furthermore, we demonstrate that LcMYB2 promoted seed germination and root growth under drought and ABA treatments. Additionally, we confirmed that LcMYB2 can regulate LcDREB2 expression in sheepgrass by binding to its promoter, and it activates the expression of the osmotic stress marker genes AtDREB2A, AtLEA14 and AtP5CS1 by directly binding to their promoters in transgenic Arabidopsis. Conclusions Based on these results, we propose that LcMYB2 improves plant drought stress tolerance by increasing the accumulation of osmoprotectants and promoting root growth. Therefore, LcMYB2 plays pivotal roles in plant responses to drought stress and is an important candidate for genetic manipulation to create drought-resistant crops, especially during seed germination.


Antioxidants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 161 ◽  
Author(s):  
Muhammad Junaid Rao ◽  
Yuantao Xu ◽  
Xiaomei Tang ◽  
Yue Huang ◽  
Jihong Liu ◽  
...  

CYTOCHROME P450s genes are a large gene family in the plant kingdom. Our earlier transcriptome data revealed that a CYTOCHROME P450 gene of Citrus sinensis (CsCYT75B1) was associated with flavonoid metabolism and was highly induced after drought stress. Here, we characterized the function of CsCYT75B1 in drought tolerance by overexpressing it in Arabidopsis thaliana. Our results demonstrated that the overexpression of the CsCYT75B1 gene significantly enhanced the total flavonoid contents with increased antioxidant activity in transgenic Arabidopsis. The gene expression results showed that several genes that are responsible for the biosynthesis of antioxidant flavonoids were induced by 2–12 fold in transgenic Arabidopsis lines. After 14 days of drought stress, all transgenic lines displayed an enhanced tolerance to drought stress along with accumulating antioxidant flavonoids with lower superoxide radicals and reactive oxygen species (ROS) than wild type plants. In addition, drought-stressed transgenic lines possessed higher antioxidant enzymatic activities than wild type transgenic lines. Moreover, the stressed transgenic lines had significantly lower levels of electrolytic leakage than wild type transgenic lines. These results demonstrate that the CsCYT75B1 gene of sweet orange functions in the metabolism of antioxidant flavonoid and contributes to drought tolerance by elevating ROS scavenging activities.


HortScience ◽  
2012 ◽  
Vol 47 (8) ◽  
pp. 1050-1055 ◽  
Author(s):  
Xiaoya Cai ◽  
Terri Starman ◽  
Genhua Niu ◽  
Charles Hall ◽  
Leonardo Lombardini

A greenhouse study was conducted to evaluate the response of four garden roses (Rosa ×hybrid L.), ‘RADrazz’, ‘Belinda’s Dream’, ‘Old Blush’, and ‘Marie Pavie’, to drought stress. Plants grown in containers were subjected to two watering treatments, well-irrigated [water as needed: ≈35% substrate moisture content (SMC) at re-watering] and cyclic drought stress (withholding irrigation until plants exhibit incipient wilting: ≈10% SMC, then re-watering to field capacity for subsequent dry down). Shoot growth and flower number were reduced in the drought treatment compared with the well-irrigated plants in all cultivars with least reduction in ‘RADrazz’. Drought stress reduced root growth in ‘Belinda’s Dream’ and ‘Marie Pavie’, whereas there was no difference in root growth in ‘RADrazz’ and ‘Old Blush’. Decreased SMC induced reduction in net photosynthetic rate (Pn), stomatal conductance (gS), transpiration rate (E), and midday leaf water potential (ψ). Leaf water use efficiency (WUE) increased as SMC decreased in all cultivars. However, the relationship between these physiological parameters and SMC differed among the cultivars. At SMC between 10% and 20%, ‘RADrazz’ had higher Pn, gS, E, and WUE compared with the other three cultivars. Therefore, ‘RADrazz’ was the most drought-tolerant during container production among the cultivars investigated. With lower gas exchange rates and greater reduction in flower number at low SMC, ‘Marie Pavie’ was less drought-tolerant compared with the other three cultivars.


2019 ◽  
Author(s):  
xiufang guo ◽  
Pincang Zhao ◽  
Shenglin Hou ◽  
Junting Jia ◽  
Weiguang Yang ◽  
...  

Abstract Background Drought is one of the most serious factors limiting plant growth and production. Sheepgrass can adapt well to various adverse conditions, including drought. However, during germination, sheepgrass young seedlings are sensitive to these adverse conditions. Therefore, the adaptability of seedlings is very important for plant survival, especially in plants that inhabit grasslands or the construction of artificial grassland. Results In this study, we found a sheepgrass MYB-related transcription factor, LcMYB2 that is up-regulated by drought stress and returns to a basal level after rewatering. The expression of LcMYB2 was mainly induced by osmotic stress and was localized to the nucleus. Furthermore, we demonstrate that LcMYB2 promoted seed germination and root growth under drought and ABA treatments. Additionally, we confirmed that LcMYB2 can regulate LcDREB2 expression in sheepgrass by binding to its promoter, and it activates the expression of the osmotic stress marker genes AtDREB2A, AtLEA14 and AtP5CS1 by directly binding to their promoters in transgenic Arabidopsis. Conclusions Based on these results, we propose that LcMYB2 improves plant drought stress tolerance by increasing the accumulation of osmoprotectants and promoting root growth. Therefore, LcMYB2 plays pivotal roles in plant responses to drought stress and is an important candidate for genetic manipulation to create drought-resistant crops, especially during seed germination.


2018 ◽  
Vol 98 (5) ◽  
pp. 1023-1034 ◽  
Author(s):  
Deguo Han ◽  
Haibin Ding ◽  
Lijing Chai ◽  
Wei Liu ◽  
Zhaoyuan Zhang ◽  
...  

WRKY transcription factors are involved in stress responses in plants; however, their roles in abiotic stresses are still not well known in Malus plants. In the present study, a WRKY gene was isolated from Malus baccata (L.) Borkh and designated as MbWRKY1. Subcellular localization revealed that MbWRKY1 was localized in the nucleus. The expression levels of MbWRKY1 were up-regulated by dehydration, salinity, and ABA treatments in M. baccata seedlings. When MbWRKY1 was introduced into tobacco, it improved drought stress tolerance in transgenic plants. Under the drought treatment, transgenic plants had higher contents of chlorophyll, proline, relative water, AsA, and GSH than wild-type (WT) plants. Compared with WT plants, the overexpression of MbWRKY1 in transgenic tobacco also led to decreased levels of H2O2, MDA, and elecrolyte leakage when dealing with drought stress. There were increased activities of POD, CAT, SOD, and APX in transgenic tobaccos, especially when dealing with drought treatment. Moreover, the MbWRKY1 transgenic plants enhanced the expressions of oxidative stress response (NtPOD, NtCAT, NtSOD, and NtAPX) and stress-related genes (NtP5CS and NtLEA5) when dealing with drought stress. These results suggest that the MbWRKY1 gene plays a positive regulatory role in drought stress response.


2010 ◽  
Vol 135 (3) ◽  
pp. 230-239 ◽  
Author(s):  
Emily B. Merewitz ◽  
Thomas Gianfagna ◽  
Bingru Huang

Drought stress is a widespread abiotic stress that causes a decline in plant growth. Drought injury symptoms have been associated with an inhibition in cytokinin (CK) synthesis. The objectives of this study were to investigate whether expression of a gene (ipt) encoding the enzyme adenine isopentenyl phosphotransferase for CK synthesis ligated to a senescence-activated promoter (SAG12) or a heat shock promoter (HSP18.2) would improve drought tolerance in creeping bentgrass (Agrostis stolonifera) and to examine shoot and root growth responses to drought stress associated with changes in endogenous production of CK, and the proportional change in CK and abscisic acid (ABA) due to ipt transformation. Most SAG12-ipt and HSP18.2-ipt transgenic lines exhibited significantly higher turf quality, photochemical efficiency, chlorophyll content, leaf relative water content, and root:shoot ratio under drought stress than the null transformant or the wild-type ‘Penncross’ plants. Transgenic lines that had better growth and turf performance generally had higher CK content and a higher CK-to-ABA ratio, although the direct correlation of CK and ABA content with individual physiological parameters in individual lines was not clear. Our results demonstrated that expressing ipt resulted in the improvement of turf performance under drought stress in creeping bentgrass in some of the transgenic plants with SAG12-ipt or HSP18.2-ipt, which could be associated with the suppression of leaf senescence and promoting root growth relative to shoot growth due to the maintenance of higher CK level and a higher ratio of CK to ABA.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qian Liu ◽  
Guang-rui Dong ◽  
Yu-qing Ma ◽  
Shu-man Zhao ◽  
Xi Liu ◽  
...  

Drought is one of the most important environmental constraints affecting plant growth and development and ultimately leads to yield loss. Uridine diphosphate (UDP)-dependent glycosyltransferases (UGTs) are believed to play key roles in coping with environmental stresses. In rice, it is estimated that there are more than 200 UGT genes. However, most of them have not been identified as their physiological significance. In this study, we reported the characterization of a putative glycosyltransferase gene UGT85E1 in rice. UGT85E1 gene is significantly upregulated by drought stress and abscisic acid (ABA) treatment. The overexpression of UGT85E1 led to an enhanced tolerance in transgenic rice plants to drought stress, while the ugt85e1 mutants of rice showed a more sensitive phenotype to drought stress. Further studies indicated that UGT85E1 overexpression induced ABA accumulation, stomatal closure, enhanced reactive oxygen species (ROS) scavenging capacity, increased proline and sugar contents, and upregulated expression of stress-related genes under drought stress conditions. Moreover, when UGT85E1 was ectopically overexpressed in Arabidopsis, the transgenic plants showed increased tolerance to drought as well as in rice. Our findings suggest that UGT85E1 plays an important role in mediating plant response to drought and oxidative stresses. This work may provide a promising candidate gene for cultivating drought-tolerant crops both in dicots and monocots.


2019 ◽  
Author(s):  
Pincang Zhao ◽  
Shenglin Hou ◽  
xiufang guo ◽  
Junting Jia ◽  
Weiguang Yang ◽  
...  

Abstract Background Drought is one of the most serious factors limiting plant growth and production. Sheepgrass can adapt well to various adverse conditions, including drought. However, during germination, sheepgrass young seedlings are sensitive to these adverse conditions. Therefore, the adaptability of seedlings is very important for plant survival, especially in plants that inhabit grasslands or the construction of artificial grassland. Results In this study, we found a sheepgrass MYB-related transcription factor, LcMYB2 that is up-regulated by drought stress and returns to a basal level after rewatering. The expression of LcMYB2 was mainly induced by osmotic stress and was localized to the nucleus. Furthermore, we demonstrate that LcMYB2 promoted seed germination and root growth under drought and ABA treatments. Additionally, we confirmed that LcMYB2 can regulate LcDREB2 expression in sheepgrass by binding to its promoter, and it activates the expression of the osmotic stress marker genes AtDREB2A, AtLEA14 and AtP5CS1 by directly binding to their promoters in transgenic Arabidopsis. Conclusions Based on these results, we propose that LcMYB2 improves plant drought stress tolerance by increasing the accumulation of osmoprotectants and promoting root growth. Therefore, LcMYB2 plays pivotal roles in plant responses to drought stress and is an important candidate for genetic manipulation to create drought-resistant crops, especially during seed germination.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Pincang Zhao ◽  
Shenglin Hou ◽  
Xiufang Guo ◽  
Junting Jia ◽  
Weiguang Yang ◽  
...  

Abstract Background Drought is one of the most serious factors limiting plant growth and production. Sheepgrass can adapt well to various adverse conditions, including drought. However, during germination, sheepgrass young seedlings are sensitive to these adverse conditions. Therefore, the adaptability of seedlings is very important for plant survival, especially in plants that inhabit grasslands or the construction of artificial grassland. Results In this study, we found a sheepgrass MYB-related transcription factor, LcMYB2 that is up-regulated by drought stress and returns to a basal level after rewatering. The expression of LcMYB2 was mainly induced by osmotic stress and was localized to the nucleus. Furthermore, we demonstrate that LcMYB2 promoted seed germination and root growth under drought and ABA treatments. Additionally, we confirmed that LcMYB2 can regulate LcDREB2 expression in sheepgrass by binding to its promoter, and it activates the expression of the osmotic stress marker genes AtDREB2A, AtLEA14 and AtP5CS1 by directly binding to their promoters in transgenic Arabidopsis. Conclusions Based on these results, we propose that LcMYB2 improves plant drought stress tolerance by increasing the accumulation of osmoprotectants and promoting root growth. Therefore, LcMYB2 plays pivotal roles in plant responses to drought stress and is an important candidate for genetic manipulation to create drought-resistant crops, especially during seed germination.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chunjuan Li ◽  
Caixia Yan ◽  
Quanxi Sun ◽  
Juan Wang ◽  
Cuiling Yuan ◽  
...  

Abstract Background Basic helix-loop-helix (bHLH) transcription factors (TFs) are one of the largest gene families in plants. They regulate gene expression through interactions with specific motifs in target genes. bHLH TFs are not only universally involved in plant growth but also play an important role in plant responses to abiotic stress. However, most members of this family have not been functionally characterized. Results Here, we characterized the function of a bHLH TF in the peanut, AhHLH112, in response to drought stress. AhHLH112 is localized in the nucleus and it was induced by drought stress. The overexpression of this gene improves the drought tolerance of transgenic plants both in seedling and adult stages. Compared to wild-type plants, the transgenic plants accumulated less reactive oxygen species (ROS), accompanied by increased activity and transcript levels of antioxidant enzymes (superoxide dismutase, peroxidase and catalase). In addition, the WT plants demonstrated higher MDA concentration levels and higher water loss rate than the transgenic plants under drought treatment. The Yeast one-hybrid result also demonstrates that AhbHLH112 directly and specifically binds to and activates the promoter of the peroxidase (POD) gene. Besides, overexpression of AhHLH112 improved ABA level under drought condition, and elevated the expression of genes associated with ABA biosynthesis and ABA responding, including AtNCED3 and AtRD29A. Conclusions Drawing on the results of our experiments, we propose that, by improving ROS-scavenging ability, at least in part through the regulation of POD -mediated H2O2 homeostasis, and possibly participates in ABA-dependent stress-responding pathway, AhbHLH112 acts as a positive factor in drought stress tolerance.


Sign in / Sign up

Export Citation Format

Share Document