scholarly journals Pin-on-Plate Abrasive Wear Test for Several Composite Materials

Proceedings ◽  
2018 ◽  
Vol 2 (8) ◽  
pp. 469 ◽  
Author(s):  
Hasan Muhandes ◽  
Gábor Kalácska ◽  
Nawar Kadi ◽  
Mikael Skrifvars
2019 ◽  
Vol 4 (1) ◽  
pp. 437-444
Author(s):  
Hasan Muhandes ◽  
Gábor Kalácska

To choose the proper material for agricultural machinery we tested several materials with abrasive cloth on the pin-on-plate test device. After having the pre-results, we launched more complex abrasive testing (slurry-pot) simulating more realistic mode with soils to investigate the abrasive wear mechanism and resistance of the selected up-to-date polymeric structural materials. for this, we developed a modified slurry-pot test machine that ensures the comparability of the materials over a wide range of conditions. Through this device, several parameters could be controlled like speed, the soil particle’s hit angle on the tested surface.


2019 ◽  
Vol 895 ◽  
pp. 45-51
Author(s):  
M.J. Raghu ◽  
Govardhan Goud

Natural fibers are widely used for reinforcement in polymer composite materials and proved to be effectively replacing synthetic fiber reinforced polymer composites to some extent in applications like domestic, automotive and lower end aerospace parts. The natural fiber reinforced composites are environment friendly, have high strength to weight ratio as well as specific strengths comparable with synthetic glass fiber reinforced composites. In the present work, hybrid epoxy composites were fabricated using calotropis procera and glass fibers as reinforcement by hand lay-up method. The fibre reinforcement in epoxy matrix was maintained at 20 wt%. In 20 wt% reinforcement of fibre, the content of calotropis procera and glass fibre were varied from 5, 10, 15 and 20 wt%. The dry sliding wear test as per ASTM G99 and three body abrasive wear test as per ASTM G65 were conducted to find the tribological properties by varying speed, load, distance and abrasive size. The hybrid composite having 5 wt% calotropis procera and 15 wt% glass fibre showed less wear loss in hybrid composites both in sliding wear test as well as in abrasive wear test which is comparable with 20 wt% glass fibre reinforced epoxy composite which marked very low wear loss. The SEM analysis was carried out to study the worn out surfaces of dry sliding wear test and three body abrasive wear test specimens.


2015 ◽  
Vol 9 (3) ◽  
pp. 159-164 ◽  
Author(s):  
N. B. Dhokey ◽  
A. Raskar ◽  
A. R. Hake ◽  
G. Mohapatra

2021 ◽  
Vol 29 (1) ◽  
pp. 65-68
Author(s):  
O. V. Sukhova

The way to control the interfacial reactions that processes during infiltration of macroheterogeneous composite materials is suggested. The idea is to combine the stable and metastable phases in the filler’s structure which dissolves at a different rate in the molten binder. To prove this approach, the structure and gas-abrasive wear of macroheterogeneous composite materials with Cu–20Ni–20Mn binder reinforced by Fe–(9.0–10.0)B–(0.01-0.2)C filler (in wt. %) cooled at 10–20 K/s or 103–104 K/s are studied. It is shown that the wear resistance of the investigated composite materials can be enhanced by accelerating interfacial reactions between the filler and the molten binder. Therefore, the composite materials produced from a rapidly cooled Fe–B–C filler show a higher resistance to gas-abrasive wear due to formation of Fe–Fe2(B,C) metastable eutectics in its structure. This eutectics crystallizes under metastable phase diagram due to the suppression of stable Fe2(B,C) phase formation and saturation of the rest of liquid by iron in the filler cooled at 103–104 K/s. As a result of rapid dissolution of the eutectics in the molten binder during infiltration, the strong adhesion at the interfaces of the composite materials is achieved which prevents the filler from spalling out under the impacts of abrasive.


Author(s):  
Arabinda Meher ◽  
Manas Mohan Mahapatra ◽  
Priyaranjan Samal ◽  
Pandu R. Vundavilli

In the present study, the statistical analysis on tribological behavior of RZ5/TiB2 magnesium-based metal matrix composites is carried out using Taguchi design and analysis of variance (ANOVA) technique. Taguchi analysis using signal-to-noise ratio indicates that the sliding distance and wt.% TiB2 are the most significant factors in evaluating weight loss and coefficient of friction, respectively. The regression equation is formulated utilizing the ANOVA technique to study the output responses based on the input abrasive wear test experimental results. The regression equation is validated through a comprehensive study taking a series of abrasive wear tests and indicates the percentage deviation of regression modeling is in the range of ± 10%. The individual and combined effect of wear parameters on tribological behavior are investigated through the main effect plots and response surface plots. The micrograph of the worn surface of RZ5/TiB2 composites is studied using field emission scanning electron microscope (FESEM), indicating the formation of an oxide layer on the worn surface.


Wear ◽  
1997 ◽  
Vol 210 (1-2) ◽  
pp. 299-303 ◽  
Author(s):  
Wen-Zhong Wu ◽  
Jian-Dong Xing ◽  
Jun-Yi Su

Author(s):  
I. M. Hutchings

The traditional classification of abrasive wear into two-and three-body, high and low stress, open and closed etc. does not recognise the essential importance of particle motion, which is better described as either sliding or rolling. Abrasive wear tests with free abrasives can produce either type of motion, depending on the test conditions. The widely-used dry sand rubber wheel test often produces both motions over different areas of the sample. The more recent micro-scale abrasion test tends to favour one or the other over most of the wear scar area. Analytical models can be developed which allow the dominant particle motion to be predicted, and mapped using readily accessible parameters. In erosive wear, particle motion can also be important; recent work suggests that particle rotation is imparted in some types of erosive wear test, and that it may be responsible for the differences in wear rate found in tests under nominally identical conditions with different designs of apparatus. It is suggested that in the use of laboratory abrasion and erosion tests, and in the analysis of practical instances of wear by hard particles, close attention should be paid to the nature of particle motion, since this will influence both the dominant wear mechanisms and also the wear rates.


Sign in / Sign up

Export Citation Format

Share Document