scholarly journals Spatial and Temporal Variations of Six Criteria Air Pollutants in Fujian Province, China

Author(s):  
Weicong Fu ◽  
Ziru Chen ◽  
Zhipeng Zhu ◽  
Qunyue Liu ◽  
Cecil van den Bosch ◽  
...  

Air pollution has become a critical issue in the urban areas of southeastern China in recent years. A complete understanding of the tempo-spatial characteristics of air pollution can help the public and governmental bodies manage their lives and work better. In this study, data for six criteria air pollutants (including particulate matter (PM2.5, PM10), carbon monoxide (CO), sulfur dioxide (SO2), nitrogen dioxide (NO2) and ozone (O3)) from 37 sites in nine major cities within Fujian Province, China were collected between January 2015 to December 2016, and analyzed. We analyzed the spatial and temporal variations of these six criteria pollutants, as well as the attainment rates, and identified what were the major pollutants. Our results show that: (1) the two-year mean values of PM2.5 and PM10 exceeded the Chinese National Ambient Air Quality Standard (CAAQS) standard I levels, whereas other air pollutants were below the CAAQS standard I; (2) the six criteria air pollutants show spatial variations (i.e. most air pollutants were higher in the city center areas, followed by suburban areas and exurban areas, except for O3; and the concentrations of PM10, PM2.5, NO2, O3 were higher in coastal cities than in inland cities); (3) seasonal variations and the no attainment rates of air pollutants were found to be higher in cold seasons and lower in warm seasons, except for O3; (4) the most frequently present air pollutant was PM10, with PM2.5 and O3 being the second and third most frequent, respectively; (5) all the air pollutants, except O3, showed positive correlations with each other. These results provide additional information for the effective control of air pollution in the province of Fujian.

Author(s):  
Omar Kairan ◽  
Nur Nasehah Zainudin ◽  
Nurul Hasya Mohd Hanafiah ◽  
Nur Emylia Arissa Mohd Jafri ◽  
Fukayhah Fatiha @Suhami ◽  
...  

Air pollution has become an issue at all rates in the world. In Malaysia, there is a system is known as air quality index (API) used to indicate the overall air quality in the country where the air pollutants include or the new ambient air quality standard are sulphur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), ozone (O3) and particulate matter with size less than 10 (PM10). The concentration levels of the air pollutants were said to be affected by the monsoon changes. Therefore, this study is conducted to examine the existence of temporal variations of each air pollutant then identify the differences of each air pollutants concentration in temporal variations. This study uses secondary data where data that has been retrieved from the Department of Environment (DOE) where it is data of air pollution specifically for Kota Bharu, kelantan records. Hierarchical agglomerative cluster analysis was conducted to group monthly air quality. As a conclusion, the study can conclude that the five air pollutants grouped into several different monthly clusters mostly representing the two main monsoon seasons. Mostly air pollutant varied accordingly towards the monsoon season. During the southwestern monsoon, air pollutant concentration tends to higher compare to the northeastern monsoon with mostly due to meteorological factors.


Author(s):  
Qiwei Yu ◽  
Liqiang Zhang ◽  
Kun Hou ◽  
Jingwen Li ◽  
Suhong Liu ◽  
...  

Exposure to air pollution has been suggested to be associated with an increased risk of women’s health disorders. However, it remains unknown to what extent changes in ambient air pollution affect gynecological cancer. In our case–control study, the logistic regression model was combined with the restricted cubic spline to examine the association of short-term exposure to air pollution with gynecological cancer events using the clinical data of 35,989 women in Beijing from December 2008 to December 2017. We assessed the women’s exposure to air pollutants using the monitor located nearest to each woman’s residence and working places, adjusting for age, occupation, ambient temperature, and ambient humidity. The adjusted odds ratios (ORs) were examined to evaluate gynecologic cancer risk in six time windows (Phase 1–Phase 6) of women’s exposure to air pollutants (PM2.5, CO, O3, and SO2) and the highest ORs were found in Phase 4 (240 days). Then, the higher adjusted ORs were found associated with the increased concentrations of each pollutant (PM2.5, CO, O3, and SO2) in Phase 4. For instance, the adjusted OR of gynecological cancer risk for a 1.0-mg m−3 increase in CO exposures was 1.010 (95% CI: 0.881–1.139) below 0.8 mg m−3, 1.032 (95% CI: 0.871–1.194) at 0.8–1.0 mg m−3, 1.059 (95% CI: 0.973–1.145) at 1.0–1.4 mg m−3, and 1.120 (95% CI: 0.993–1.246) above 1.4 mg m−3. The ORs calculated in different air pollution levels accessed us to identify the nonlinear association between women’s exposure to air pollutants (PM2.5, CO, O3, and SO2) and the gynecological cancer risk. This study supports that the gynecologic risks associated with air pollution should be considered in improved public health preventive measures and policymaking to minimize the dangerous effects of air pollution.


Author(s):  
B. Yorkor ◽  
T. G. Leton ◽  
J. N. Ugbebor

This study investigated the temporal variations of air pollutant concentrations in Ogoni area, Niger Delta, Nigeria. The study used hourly data measured over 8 hours for 12 months at selected locations within the area. The analyses were based on time series and time variations techniques in Openair packages of R programming software. The variations of air pollutant concentrations by time of day and days of week were simulated. Hours of the day, days of the week and monthly variations were graphically simulated. Variations in the mean concentrations of air pollutants by time were determined at 95 % confidence intervals. Sulphur dioxide (SO2), Nitrogen dioxide (NO2), ground level Ozone (O3) and fine particulate matter (PM2.5) concentrations exceeded permissible standards. Air pollutant concentrations showed increase in January, February, November and December compared to other months. Simulation showed that air pollutants varied significantly by hours-of-the-day and days-of-the-week and months-of-the-year. Analysis of temporal variability revealed that air pollutant concentrations increased during weekdays and decreased during weekends. The temporal variability of air pollutants in Ogoni area showed that anthropogenic activities were the main sources of air pollution in the area, therefore further studies are required to determine air pollutant dispersion pattern and evaluation the potential sources of air pollution in the area.


Author(s):  
Han Cao ◽  
Bingxiao Li ◽  
Tianlun Gu ◽  
Xiaohui Liu ◽  
Kai Meng ◽  
...  

Evidence regarding the effects of environmental factors on COVID-19 transmission is mixed. We aimed to explore the associations of air pollutants and meteorological factors with COVID-19 confirmed cases during the outbreak period throughout China. The number of COVID-19 confirmed cases, air pollutant concentrations, and meteorological factors in China from January 25 to February 29, 2020, (36 days) were extracted from authoritative electronic databases. The associations were estimated for a single-day lag as well as moving averages lag using generalized additive mixed models. Region-specific analyses and meta-analysis were conducted in 5 selected regions from the north to south of China with diverse air pollution levels and weather conditions and sufficient sample size. Nonlinear concentration–response analyses were performed. An increase of each interquartile range in PM2.5, PM10, SO2, NO2, O3, and CO at lag4 corresponded to 1.40 (1.37–1.43), 1.35 (1.32–1.37), 1.01 (1.00–1.02), 1.08 (1.07–1.10), 1.28 (1.27–1.29), and 1.26 (1.24–1.28) ORs of daily new cases, respectively. For 1°C, 1%, and 1 m/s increase in temperature, relative humidity, and wind velocity, the ORs were 0.97 (0.97–0.98), 0.96 (0.96–0.97), and 0.94 (0.92–0.95), respectively. The estimates of PM2.5, PM10, NO2, and all meteorological factors remained significantly after meta-analysis for the five selected regions. The concentration–response relationships showed that higher concentrations of air pollutants and lower meteorological factors were associated with daily new cases increasing. Higher air pollutant concentrations and lower temperature, relative humidity and wind velocity may favor COVID-19 transmission. Controlling ambient air pollution, especially for PM2.5, PM10, NO2, may be an important component of reducing risk of COVID-19 infection. In addition, as winter months are arriving in China, the meteorological factors may play a negative role in prevention. Therefore, it is significant to implement the public health control measures persistently in case another possible pandemic.


Author(s):  
Shang-Shyue Tsai ◽  
Hui-Fen Chiu ◽  
Chun-Yuh Yang

Very few studies have been performed to determine whether there is a relationship between air pollution and increases in hospitalizations for peptic ulcer, and for those that have occurred, their results may not be completely relevant to Taiwan, where the mixture of ambient air pollutants differ. We performed a time-stratified case-crossover study to investigate the possible association between air pollutant levels and hospital admissions for peptic ulcer in Taipei, Taiwan. To do this, we collected air pollution data from Taiwan's Environmental Protection Agency and hospital admissions for peptic ulcer data for the years 2009–2013 from Taiwan's National Health Insurance's research database. We used conditional logistic regression to analyze the possible association between the two, taking temperature and relative humidity into account. Risk was expressed as odds ratios and significance was expressed with 95% confidence intervals. In our single pollutant model, peptic ulcer admissions were significantly associated with all pollutants (PM10, PM2.5, SO2, NO2, CO, and O3) on warm days (>23 °C). On cool days (<23 °C), peptic ulcer admissions were significantly associated with PM10, NO2, and O3. In our two-pollutant models, peptic ulcer admissions were significantly associated NO2 and O3 when combined with each of the other pollutants on warm days, and with PM10, NO2, and O3 on cool days. It was concluded that the likelihood of peptic ulcer hospitalizations in Taipei rose significantly with increases in air pollutants during the study period.


Author(s):  
Amtul Bari Tabinda ◽  
Saleha Munir ◽  
Abdullah Yasar ◽  
Asad Ilyas

Criteria air pollutants have their significance for causing health threats and damage to theenvironment. The study was conducted to assess the seasonal and temporal variations of criteria air pollutantsand evaluating the correlations of criteria air pollutants with meteorological parameters in the city ofLahore, Pakistan for a period of one year from April 2010 to March 2011. The concentrations of criteriaair pollutants were determined at fixed monitoring stations equipped with HORIBA analyzers. The annualaverage concentrations (µg/m3) of PM2.5, O3, SO2, CO and NOx (NO+NO2) for this study period were118.94±57.46, 46.0±24.2, 39.9±8.9, 1940±1300 and 130.9±81.0 (61.8±46.2+57.3±22.19), respectively.PM2.5, SO2, CO and NOx had maximum concentrations during winter whereas O3 had maximum concentrationduring summer. Minimum concentrations of PM2.5, SO2 and NOx were found during monsoon as comparedto other seasons due to rainfall which scavenged these pollutants. The O3 showed positive correlation withtemperature and solar radiation but negative correlation with wind speed. All other criteria air pollutantsshowed negative correlation with wind speed, temperature and solar radiation. A significant (P<0.01)correlation was found between NOx and CO (r = 0.779) which showed that NOx and CO arise from commonsource that could be the vehicular emission. PM2.5 was significantly correlated (P<0.01) with NOx (r = 0.524)and CO (r = 0.519), respectively. High traffic intensity and traffic jams were responsible for increased airpollutants level especially the PM2.5, NOx and CO.


Author(s):  
Mieczysław Szyszkowicz ◽  
Nicholas de Angelis

AbstractTo investigate the acute impact of various air pollutants on various disease groups in the urban area of the city of Toronto, Canada. Statistical models were developed to estimate the relative risk of an emergency department visit associated with ambient air pollution concentration levels. These models were generated for 8 air pollutants (lagged from 0 to 14 days) and for 18 strata (based on sex, age group, and season). Twelve disease groups extracted from the International Classification of Diseases 10th Revision (ICD-10) were used as health classifications in the models. The qualitative results were collected in matrices composed of 18 rows (strata) and 15 columns (lags) for each air pollutant and the 12 health classifications. The matrix cells were assigned a value of 1 if the association was positively statistically significant; otherwise, they were assigned to a value of 0. The constructed matrices were totalized separately for each air pollutant. The resulting matrices show qualitative associations for grouped diseases, air pollutants, and their corresponding lagged concentrations and indicate the frequency of statistically significant positive associations. The results are presented in colour-gradient matrices with the number of associations for every combination of patient strata, pollutant, and lag in corresponding cells. The highest number of the associations was 8 (of 12 possible) obtained for the same day exposure to carbon monoxide, nitrogen dioxide, and days with elevated air quality health index (AQHI) values. For carbon monoxide, the number of the associations decreases with the increasing lags. For this air pollutant, there were almost no associations after 8 days of lag. In the case of nitrogen dioxide, the associations persist even for longer lags. The numerical values obtained from the models are provided for every pollutant. The constructed matrices are a useful tool to analyze the impact of ambient air pollution concentrations on public health.


Author(s):  
Jing Wu ◽  
Yi Ning ◽  
Yongxiang Gao ◽  
Ruiqi Shan ◽  
Bo Wang ◽  
...  

The study aimed to evaluate the relationships between air pollutants and risk of magnetic resonance imaging (MRI)-defined brain infarcts (BI). We used data from routine health examinations of 1,400,503 participants aged ≥18 years who underwent brain MRI scans in 174 cities in 30 provinces in China in 2018. We assessed exposures to particulate matter (PM)2.5, PM10, nitrogen dioxide (NO2), and carbon monoxide (CO) from 2015 to 2017. MRI-defined BI was defined as lesions ≥3 mm in diameter. Air pollutants were associated with a higher risk of MRI-defined BI. The odds ratio (OR) (95% CI) for MRI-defined BI comparing the highest with the lowest tertiles of air pollutant concentrations was 2.00 (1.96–2.03) for PM2.5, 1.68 (1.65–1.71) for PM10, 1.58 (1.55–1.61) for NO2, and 1.57 (1.54–1.60) for CO. Each SD increase in air pollutants was associated with 16–42% increases in the risk of MRI-defined BI. The associations were stronger in the elderly subgroup. This is the largest survey to evaluate the association between air pollution and MRI-defined BI. Our findings indicate that ambient air pollution was significantly associated with a higher risk of MRI-defined BI.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Mieczysław Szyszkowicz

Background. Ambient air pollution is a recognized risk factor for multiple health conditions. For some health problems, the impact of air pollution is particularly evident to the patients in a specific age range. Nonsimultaneous exposures to two or more air pollutants may have different relationships with health outcomes than do simultaneous exposures. Methods. Case-crossover technique was used to analyze data on emergency department (ED) visits for ischemic heart disease (IHD), epistaxis, and upper respiratory infection (URI). Conditional logistic regression models were used to estimate odds ratios and their 95% confidence intervals corresponding to an increase in an interquartile range of air pollutant concentrations. Results. The results for IHD show that for older patients (age 60+ years), the association between sulphur dioxide (SO2) exposure and IHD is weak. For ED visits for epistaxis (O3 and SO2 in one model) and URI (O3 and NO2 in one model), air pollutants lagged differently in the common model indicated significant statistical associations but not for common lags. Conclusion. The study findings, based on analyzed examples, suggest that (i) IHD cases in older age are less related to air pollution and (ii) air pollutants may affect some health conditions by a specific sequence of exposure occurrences.


Sign in / Sign up

Export Citation Format

Share Document