scholarly journals Concentration, Spatial Distribution, Contamination Degree and Human Health Risk Assessment of Heavy Metals in Urban Soils across China between 2003 and 2019—A Systematic Review

Author(s):  
Shuangmei Tong ◽  
Hairong Li ◽  
Li Wang ◽  
Muyesaier Tudi ◽  
Linsheng Yang

This study provides an overview of the studies of heavy metal pollution regarding As, Cd, Cr, Hg, Pb, Cu, Zn and Ni in the urban soils throughout 71 cities of China, based on data from online literature, during the period 2003–2019. The concentrations, spatial distributions, contamination degrees and health risks of heavy metals in the urban soils were evaluated. The results demonstrated that the mean values of eight heavy metals all exceeded the soil background values in China, and the kriging interpolation method showed that the hot-spot cities with heavy metal contamination in urban soils were mainly concentrated in the southwest, southcentral, southeast coast, northcentral and northwest regions of China. The geoaccumulation index (Igeo) indicated that Hg and Cd were at moderate contamination levels and that the levels of the other six metals did not appear contamination. The pollution index (PI) showed that Cd and Hg reached high contamination levels, and the other metals reached moderate contamination levels. The integrated pollution index (IPI) and potential ecological risk index (PRI) indicated that the integral urban soils in the study areas ranked high contamination levels and moderate ecological risk degree, respectively, and Cd and Hg should be labeled as priority metals for control in the urban soils around China. The human health risk assessments for the heavy metals indicated that ingestion was the dominant exposure pathway for having adverse effects on human health. The mean Hazard index (HI) values of eight heavy metals all showed that adverse effects on human health were unlikely, and the mean carcinogenic (CR) values of As, Cr and Ni for children and adults all suggested an acceptable carcinogenic risk to human beings. In addition, children exposed to these heavy metals faced more serious non-carcinogenic and carcinogenic health threats compared to adults. The results could provide valuable information for demanding the better control of heavy metal pollution and mitigation of the adverse effects on residents by environmental regulators in national urban regions.

2016 ◽  
Vol 31 (4) ◽  
Author(s):  
Sock Yin Tan ◽  
Sarva Mangala Praveena ◽  
Emilia Zainal Abidin ◽  
Manraj Singh Cheema

AbstractIndoor dust acts as a media for heavy metal deposition. Past studies have shown that heavy metal concentration in indoor dust is affected by local human activities and atmospheric transport can have harmful effects on human health. Additionally, children are more sensitive to heavy metals due to their hand-to-mouth behaviour and rapid body development. However, limited information on health risks were found in past dust studies as these studies aimed to identify heavy metal concentrations and sources of indoor dust. The objective of this review is to discuss heavy metal concentration and sources influencing its concentration in indoor dust. Accordingly, high lead (Pb) concentration (639.10 μg/g) has been reported in heavy traffic areas. In addition, this review paper aims to estimate the health risk to children from heavy metals in indoor dust via multiple exposure pathways using the health-risk assessment (HRA). Urban areas and industrial sites have revealed high heavy metal concentration in comparison to rural areas. Hazard index (HI) values found in arsenic (As), chromium (Cr) and Pb were 21.30, 1.10 and 2.40, respectively, indicate that non-carcinogenic elements are found in children. Furthermore, most of the past studies have found that carcinogenic risks for As, cadmium (Cd), Cr and Pb were below the acceptable total lifetime cancer risk (TLCR) range (1×10


2017 ◽  
Vol 40 (5) ◽  
pp. 2007-2020 ◽  
Author(s):  
Yufeng Jiang ◽  
Leiping Shi ◽  
A-long Guang ◽  
Zhongfeng Mu ◽  
Huiying Zhan ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3405
Author(s):  
Yahia A. Othman ◽  
Amani Al-Assaf ◽  
Maher J. Tadros ◽  
Abeer Albalawneh

Wastewater is actively used for irrigation of vegetable and forage crops in arid lands due to water scarcity and cost advantages. The objective of this review was to assess the effect of wastewater (mixture sources) reuse in irrigation on soil, crop (vegetable and forage crops), animal products, and human health. The metadata analysis of 95 studies revealed that the mean of toxic heavy metals including nickel (Ni), chromium (Cr), cadmium (Cd), lead (Pb), and zinc (Zn) in untreated wastewater were higher than the world standard limits in wastewater-irrigated regions. Although heavy metals in treated wastewater were within the standard limits in those areas, the concentration of those toxic elements (Pb, Cd, Ni, Cr, and As) exceeded the allowable limits in both soil and vegetables’ edible parts. In fact, the concentration of heavy metals in vegetables’ edible parts increased by 3–9 fold when compared with those irrigated with fresh water. Escherichia coli in wastewater-irrigated soil was about 2 × 106 (CFU g−1) and about 15 (CFU g−1) in vegetables’ edible parts (leaf, bulb, tuber and fruit) while the mean total coliforms was about 1.4 × 106 and 55 (CFU g−1) in soil and vegetables’ edible parts, respectively. For human health risk assessment, the estimated daily intake (EDI) and human health risk index (HRI) ranged from 0.01 to 8 (EDI and HRI > 1.0 associated with adverse health effects). Although the mean of EDI for heavy metals from wastewater-irrigated vegetables were less than 1, the HRI for Cd and Pb were above the limits for safe consumption. Overall, heavy metal levels in wastewater that used for irrigation of agricultural crops could be within the recommended levels by the world standards, but the long-term use of this reused water will contaminate soil and crops with several toxic heavy metals leading to potential carcinogenic risks to humans. Therefore, rigorous and frequent testing (wastewater, soil, and plant) is required in cultivated farms to prevent the translocation of heavy metals in the food chain.


2021 ◽  
Vol 193 (4) ◽  
Author(s):  
Anahi Aguilera ◽  
Francisco Bautista ◽  
Margarita Gutiérrez-Ruiz ◽  
Agueda E. Ceniceros-Gómez ◽  
Rubén Cejudo ◽  
...  

AbstractIn large industrialized cities, tons of particles containing heavy metals are released into the environment and accumulate on street surfaces. Such particles cause a potential risk to human health due to their composition and size. The heavy metal contamination levels, main emission sources, and human health risks were identified in 482 samples of street dust. Heavy metal concentrations were obtained by microwave-assisted acid digestion and ICP-OES. The results indicated that street dust in Mexico City is contaminated mainly with Pb, Zn, and Cu, according to the contamination factor and the geoaccumulation index. The pollution load index of the street dust was made with the concentrations of Pb, Zn, Cu, Cr, and Ni. The main sources of Pb, Zn, Cu, and Cr are anthropic, probably due to vehicular traffic. The highest levels of Cr and Pb in urban dust represent a health risk for children. Contamination limits were proposed for heavy metals in street dust of Mexico City. These limits might be useful to generate and apply public policies to decrease anthropic emissions of the heavy metals studied, particularly Cr and Pb.


2020 ◽  
Vol 7 (2) ◽  
pp. 67-77
Author(s):  
Bahareh Lorestani ◽  
Hajar Merrikhpour ◽  
Mehrdad Cheraghi

Background: Heavy metals (HMs) contamination from industrial wastewater is a major environmental problem that has been increasing in the past few years. The purpose of this study was to investigate the current status of HMs contamination in Bu-Ali industrial town, Hamedan, western Iran. Methods: The concentration of 9 serious HMs (arsenic, cadmium, chromium, copper, iron, lead, manganese, nickel, and zinc) in groundwater samples was studied during spring 2017. In order to evaluate water quality for aquaculture and drinking purposes, heavy metal evaluation index (HEI), heavy metal pollution index (HPI), and contamination (Cd) indicator were calculated. Health risk of HMs was also calculated to assess the risk of cancer. Results: The results showed that the mean concentration of the HMs according to the Cd index was as follows: Pb > Ni > Cr > Fe > Cd > As > Cu > Zn > Mn. The mean HEI and HPI values were 89.1 and 815.5, respectively. The results also showed that there was no relationship between the HMs concentration and cancer risk. Conclusion: The concentration of the studied HMs in most samples was higher than the permissible limit for drinking water. The HEI and HPI values in high-risk samples were higher than the permissible limit of drinking water, therefore, there is high risk and limitation for aquatic life, but there is no risk of cancer.


2018 ◽  
Vol 13 (1) ◽  
pp. 15-31 ◽  
Author(s):  
Elif Arici ◽  
Aysah Öztekin ◽  
Levent Bat

The levels of Fe, Zn, Mn, Cu, Pb, Cd and Hg in the edible tissues of Mytilus galloprovincialis Lamarck, 1819 (Mediterranean mussel) picked up from the Black Sea coasts of Turkey have been determined by Inductively Coupled Plasma – Mass Spectrometer (ICP/MS) with a view to biomonitoring metal contamination in 2015. In this work, a statistically significant difference in the amounts of all studied heavy metals analyzed was noticed amidst sampling areas namely Igneada, Sinop, Samsun and Trabzon so that appraise welfare threat for mussel consumers, utilization M. galloprovincialis as biomonitors. The outcomes of this study were contrasted with the outlines stated by the Ministry of Agriculture, Fisheries and Food (MAFF), the Turkish Food Codex and Commission Regulation (EC) for the harmless consumption restrictions of Bivalves as seafood. Moreover, former works with mussels in the Black Sea countries were reviewed and a summary of heavy metal amounts in mussels from whole the Black Sea waters were presented. In general these available measurements clearly indicated a low level heavy metal in M. galloprovincialis in coastal waters of the Black Sea. In this study the concentrations (mg metal kg-1 wet wt.) of metals ranged from 18-35 for Fe, 8-27 for Zn, 2.8-4.5 for Mn, 0.5-1.8 for Cu, 0.06-0.31 for Pb, 0.04-0.10 for Cd and 0.03-0.07 for Hg. Considering human health with respect to the investigated heavy metals, the estimated daily intakes (EDIs) did not exceed the permissible intakes. No chronic systemic risk was found since total hazard index (0.521) were quite below critical value 1, and the carcinogenic risk for heavy metals did not exceed the tolerable values. Although there was no health risk to consumed mussels from the Black Sea riparian countries, the amount of mussels consumed is mainly unknown in countries; thus, consumption of about 1 serving of mussels from clean coastal waters per week is enough.


Farmacist ro ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 24-26
Author(s):  
Cerasela Elena Gîrd

At present, the society is facing a paradox, namely, as the technology and the industry are more efficient, the consumption need for various chemicals increases, which determines the evolution of adverse effects on human health, but also on the environment. The presence of heavy metal residues in medicinal plants raises a big problem at the moment regarding the safety of the combination in the treatment, especially for long periods, of those food/nutritional supplements obtained from contaminated raw materials.


2021 ◽  
Author(s):  
Ullah AKM Atique ◽  
Shazia Afrin ◽  
Mohammad Mozammal Hosen ◽  
Maesha Musarrat ◽  
Tania Ferdoushy ◽  
...  

Abstract Chicken meat and hen egg are very popular foodstuffs around the world and highly consumed as curry, fast food, processed food, etc. assuming a promising source of protein. In the present study, the concentrations of Pb, Cd, Cr, As, Hg, Mn, Fe, and Zn in nationally representative samples of chicken meat and hen egg were determined and found in the range of 0.03–2.73, 0.01–0.015, 0.025–0.67, 0.04–0.06, 0.01–0.015, 0.15–0.63, 2.50–38.6, and 1.02–19.4 mg/kg-fw, respectively. The results demonstrated that only Pb exceeded the maximum allowable concentration (MAC) for dietary food. Multivariate statistical analyses depicted that anthropogenic activities were the major source of heavy metals in the investigated foodstuffs. Human health risks associated with the dietary intake of these metals through the consumption of chicken meat and hen egg were evaluated in terms of estimated daily intake (EDI), non-carcinogenic risk of individual heavy metal by target hazard quotient (THQ), total target hazard quotient (TTHQ) for combined metals and carcinogenic risk (CR) for lifetime exposure. The calculated values of EDI, THQ, TTHQ, and CR were below their respective permissible benchmarks indicating the safe consumption of the investigated foodstuffs with respect to heavy metal contamination.


2021 ◽  
Author(s):  
Xi Liu ◽  
Junqian Zhang ◽  
Xiaolong Huang ◽  
Lu Zhang ◽  
Chao Yang ◽  
...  

Abstract Heavy metal contamination in lakes caused by the rapid industrialization and urbanization is a serious problem. In this study, 12 heavy metals were systematically surveyed in aquatic environment and organisms of Dianchi Lake. Results showed that heavy metals pollutions in surface water exhibited a decreasing order of Ba > Fe > Zn > Mn > As > Ni > Cr > Cu > Pb > Cd > Co, equipped a consistency in spatial distribution, seriously contaminating the northern and southern parts. The average concentration of sedimentary heavy metals appeared in an order of Fe > Mn > Zn > Ba > Cu > Pb > Cr > As > Ni > Co > Cd > Ag. The main existing fraction (51.9–75.0%) of Cu, Pb, Cr, As, Fe, Co, Ni, Ag, and Ba in sediments was residual fraction, whereas the exchangeable fraction (40.9–62.0%) was the dominant component for Cd, Zn, and Mn. Among the selected aquatic organisms, Cu, Pb, Zn, and Ag possessed a strong bioaccumulation effect, followed by Mn, Fe, Co, and Ni. Ecological risk assessment indicated that Cu, Cr, and Zn were the dominant heavy metal contaminants in surface water; Cd presented the disastrous risk and accounted for the considerable proportion of ecological risk in sediments. Human health risk evaluation showed that the selected aquatic products of Dianchi Lake were not absolutely safe, and As was the major contributor. This study systematically revealed heavy metal distributions in aquatic environments, which was conductive to environmental safety and human health.


Sign in / Sign up

Export Citation Format

Share Document