scholarly journals Exercise-Induced Circulating Irisin Level Is Correlated with Improved Cardiac Function in Rats

Author(s):  
Dae Yun Seo ◽  
Jun Hyun Bae ◽  
Tae Nyun Kim ◽  
Hyo-Bum Kwak ◽  
Pham Trong Kha ◽  
...  

Irisin, a recently identified myokine, plays an important physiological role in modulating energy homeostasis. However, the role of irisin in cardiac function during exercise has not been evaluated. In this study, we investigated the effect of exercise on irisin, pro-inflammatory cytokines, and cardiac function during 12 weeks of exercise in rats. Eight-week-old Sprague-Dawley male rats were randomly divided into two groups (n = 9 per group): sedentary control (CON) and exercise (EXE) groups. The EXE group was trained on a motorized treadmill at 20 m/min, for 60 min/day, five times/week for 12 weeks. The EXE group showed a decrease in abdominal visceral fat (p < 0.05), epididymal fat (p < 0.01), and total cholesterol (TC) (p < 0.05) and an increase in irisin levels (p < 0.01). Irisin negatively correlated with abdominal visceral (p < 0.05) and epididymal fat (p < 0.05) and positively correlated with the ejection fraction (p < 0.05), fractional shortening (p < 0.05), and cardiac output (p < 0.05). In conclusion, exercise decreases the abdominal visceral and epididymal fat and TC levels, possibly caused by elevated irisin levels, thus improving the cardiac function. This suggests that exercise-induced circulating irisin levels correlate with improved cardiac function in rats.

2020 ◽  
Vol 52 (09) ◽  
pp. 676-684
Author(s):  
Anna-Maria Wilz ◽  
Kerstin Wernecke ◽  
Lena Appel ◽  
Johanna Kahrs ◽  
Riccardo Dore ◽  
...  

AbstractNesfatin-1 is the proteolytic cleavage product of Nucleobindin 2, which is expressed both in a number of brain nuclei (e. g., the paraventricular nucleus of the hypothalamus) and peripheral tissues. While Nucleobindin 2 acts as a calcium binding protein, nesfatin-1 was shown to affect energy homeostasis upon central nervous administration by decreasing food intake and increasing thermogenesis. In turn, Nucleobindin 2 mRNA expression is downregulated in starvation and upregulated in the satiated state. Still, knowledge about the physiological role of endogenous Nucleobindin 2/nesfatin-1 in the control of energy homeostasis is limited and since its receptor has not yet been identified, rendering pharmacological blockade impossible. To overcome this obstacle, we tested and successfully established an antibody-based experimental model to antagonize the action of nesfatin-1. This model was then employed to investigate the physiological role of endogenous Nucleobindin 2/nesfatin-1. To this end, we applied nesfatin-1 antibody into the paraventricular nucleus of satiated rats to antagonize the presumably high endogenous Nucleobindin 2/nesfatin-1 levels in this feeding condition. In these animals, nesfatin-1 antibody administration led to a significant decrease in thermogenesis, demonstrating the important role of endogenous Nucleobindin 2/nesfatin-1in the regulation of energy expenditure. Additionally, food and water intake were significantly increased, confirming and complementing previous findings. Moreover, neuropeptide Y was identified as a major downstream target of endogenous Nucleobindin 2/nesfatin-1.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Monte Willis ◽  
Rongqin Ren ◽  
Cam Patterson

Bone morphogenetic proteins (BMPs) of the TGF-beta superfamily, have been implicated in multiple processes during cardiac development. Our laboratory recently described an unprecedented role for Bmper in antagonizing BMP-2, BMP-4, and BMP-6. To determine the role of Bmper on cardiac development in vivo, we created Bmper null (Bmper −/−) mice by replacing exons 1 and 2 with GFP. Since Bmper −/− mice are perinatally lethal, we determined pre-natal cardiac function of Bmper −/− mice in utero just before birth. By echocardiography, E18.5 Bmper −/− embryos had decreased cardiac function (24.2 +/− 8.1% fractional shortening) compared to Bmper +/− and Bmper +/+ siblings (52.2 +/− 1.6% fractional shortening) (N=4/group). To further characterize the role of Bmper on cardiac function in adult mice, we performed echocardiography on 8-week old male and female Bmper +/− and littermate control Bmper +/+. Bmper +/− mice had an approximately 15% decrease in anterior and posterior wall thickness compared to sibling Bmper +/+ mice at baseline (n=10/group). Cross-sectional areas of Bmper +/− cardiomyocytes were approximately 20% less than wild type controls, indicating cardiomyocyte hypoplasia in adult Bmper +/− mice at baseline. Histologically, no significant differences were identified in representative H&E and trichrome stained adult Bmper +/− and Bmper +/+ cardiac sections at baseline. To determine the effects of Bmper expression on the development of cardiac hypertrophy, both Bmper +/− and Bmper +/+ sibling controls underwent transaortic constriction (TAC), followed by weekly echocardiography. While a deficit was identified in Bmper +/− mice at baseline, both anterior and posterior wall thicknesses increased after TAC, such that identical wall thicknesses were identified in Bmper +/− and Bmper +/+ mice 1–4 weeks after TAC. Notably, cardiac function (fractional shortening %) and histological evaluation revealed no differences between Bmper +/− and Bmper +/+ any time after TAC. These studies identify for the first time that Bmper expression plays a critical role in regulating cardiac muscle mass during development, and that Bmper regulates the development of hypertrophy in response to pressure overload in vivo.


Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
Fatima Ryalat ◽  
N Cruz-Diaz ◽  
W Graham ◽  
T Gwathmey-Williams ◽  
P E Gallagher ◽  
...  

Aldosterone plays a significant role in hypertension and target organ damage. Aldosterone antagonists are used in the management of heart failure. However, neither the influence of age nor sex on aldosterone pathophysiology is well understood. We investigated the changes in circulating aldosterone with age and its association with cardiovascular function, using male and female hypertensive renin transgenic (mRen2)27 rats and SD rats at 20 and 50 weeks of age. Both male (22 ± 3 vs. 12 ± 2 ng/dL, n = 9 - 12, p < 0.05) and female (59 ± 10 vs. 23 ± 8 ng/dL, n = 6 - 10, p < 0.05) hypertensive rats had higher serum aldosterone compared with SD rats at 20 weeks of age. At 50 weeks of age, the difference persisted in the hypertensive female rats (63 ± 8 vs. SD: 33 ± 7 ng/dL, n = 6 - 7, p < 0.05), but not in the males. SD male rats have higher systolic blood pressure (SBP) as they age, and consequently develop cardiac diastolic dysfunction associated with higher aldosterone at 50 weeks compared to 20 weeks (28 ± 3 vs. 12 ± 2 ng/dL, n = 7 - 9, p < 0.05). This aging effect on aldosterone was not significant in the other groups. We showed previously that SD males treated with polyphenol rich muscadine grape extract (MGE) have lower aldosterone, less aortic stiffness and better cardiac diastolic function (E/e’) than controls at the older age; the MGE effect was not seen in (mRen2)27 males. Sex differences in aldosterone were not significant in the SD rats at either time point. However, (mRen2)27 female rats had higher aldosterone than (mRen2)27 males at both 20 weeks (59 ± 10 vs. 22 ± 3 ng/dL, n = 10 - 12, p < 0.05) and 50 weeks (63 ± 8 vs. 31 ± 7 ng/dL, n = 6 - 7, p < 0.05), despite the lack of significant differences in SBP. (mRen2)27 female rats preserve cardiac function better than males throughout their life span, while males develop indices of heart failure. Our data suggest that lower aldosterone levels in hypertensive males compared with females do not protect against the higher lifetime burden of elevated SBP and also may reflect different mechanisms controlling circulating aldosterone between sexes. In addition, data suggest a potential therapeutic effect of MGE in the management of age-associated moderate hypertension.


2009 ◽  
Vol 94 (12) ◽  
pp. 1153-1160 ◽  
Author(s):  
Bente K. Pedersen ◽  
Maria Pedersen ◽  
Karen S. Krabbe ◽  
Helle Bruunsgaard ◽  
Vance B. Matthews ◽  
...  

Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Jasmina Varagic ◽  
Jessica VonCannon ◽  
Sarfaraz Ahmad ◽  
Michael Bader ◽  
Carlos M Ferrario

When compared to Sprague Dawley (SD) control rats, transgenic rats expressing the human angiotensinogen (AGT) gene [TGR(hAGT)L1623] exhibit hypertension associated with cardiac hypertrophy and higher cardiac tissue angiotensin (Ang) II. Whether the hypertension and cardiac hypertrophy in these rats expressing the human AGT are related to a non-canonical pathway for Ang II formation or suppression of the counter regulatory mechanism mediated by ACE2 and Ang-(1-7) has not been established. Consequently, cardiac peptides were determined by RIA in 9 [TGR(hAGT)L1623] and 11 SD male rats (17 weeks of age). ACE2 activities in homogenized heart tissues were determined by HPLC. Cardiac Ang II content was four times higher (37.05 ± 5.04 vs. 9.62 ± 0.93 fmol/mg protein; p <0.0001) while the Ang-(1-7) level increased only 1.3 times (18.02 ± 1.62 vs 13.37 ± 1.74 fmol/mg protein; p=0.06) in TGR(hAGT)L1623 rats when compared with SD rats. Although, the Ang II/Ang-(1-7) ratio was higher in transgenic rats harboring the human AGT gene (2.10 ± 0.27 vs 0.90 ± 0.19; p <0.005), ACE2 activities between these two strains of animals were not different (12.21 ± 0.76 vs. 10.80 ± 0.91 fmol/min/mg; p >0.05). Since human AGT protein is not cleaved by rat renin, our data continues to support the view that hypertension and cardiac hypertrophy in this transgenic strain are induced by activation of a non-renin mechanism rather than a primary suppression of the compensatory Ang II degrading pathway mediated by ACE2. Further studies are necessary to determine the role of enzymes affecting Ang-(1-7) metabolism in the observed inadequate balance between Ang II and Ang-(1-7).


1993 ◽  
Vol 265 (5) ◽  
pp. R1121-R1125
Author(s):  
P. J. Rowsey ◽  
K. T. Borer ◽  
M. J. Kluger

Female Sprague-Dawley rats (12:12-h photoperiod; body temperature, BT, measured with biotelemetry) with access to running wheels for 6 wk have an elevated BT (compared with rats with no access to exercise wheels, i.e, sedentary) both during the period of voluntary exercise (nighttime) (0.5 degree C, P = 0.0001) and the nonexercise period (daytime) (0.3 degree C, P = 0.002). To determine whether prostaglandin (PG) E was responsible for any portion of this daytime rise in BT, we injected a dose of sodium salicylate (300 mg/kg), which was shown to produce complete antipyresis in rats injected with lipopolysaccharide (LPS), into exercised and sedentary rats 4 h after the onset of the lights-on period. The injections of sodium salicylate led to a fall in body temperature in both the exercised and sedentary rats of similar amounts (-0.88 degree C vs. -0.61 degree C at 2 h postinjection, P = 0.59). We conclude that the increase in daytime BT of exercised female rats is not mediated by prostaglandins.


2020 ◽  
Vol 318 (3) ◽  
pp. R634-R648 ◽  
Author(s):  
Zhigang Shi ◽  
Ding Zhao ◽  
Priscila A. Cassaglia ◽  
Virginia L. Brooks

In males, obesity increases sympathetic nerve activity (SNA), but the mechanisms are unclear. Here, we investigate insulin, via an action in the arcuate nucleus (ArcN), and downstream neuropathways, including melanocortin receptor 3/4 (MC3/4R) in the hypothalamic paraventricular nucleus (PVN) and dorsal medial hypothalamus (DMH). We studied conscious and α-chloralose-anesthetized Sprague-Dawley rats fed a high-fat diet, which causes obesity prone (OP) rats to accrue excess fat and obesity-resistant (OR) rats to maintain fat content, similar to rats fed a standard control (CON) diet. Nonspecific blockade of the ArcN with muscimol and specific blockade of ArcN insulin receptors (InsR) decreased lumbar SNA (LSNA), heart rate (HR), and mean arterial pressure (MAP) in OP, but not OR or CON, rats, indicating that insulin supports LSNA in obese males. In conscious rats, intracerebroventricular infusion of insulin increased MAP only in OP rats and also improved HR baroreflex function from subnormal to supranormal. The brain sensitization to insulin may elucidate how insulin can drive central SNA pathways when transport of insulin across the blood-brain barrier may be impaired. Blockade of PVN, but not DMH, MC3/4R with SHU9119 decreased LSNA, HR, and, MAP in OP, but not OR or CON, rats. Interestingly, nanoinjection of the MC3/4R agonist melanotan II (MTII) into the PVN increased LSNA only in OP rats, similar to PVN MTII-induced increases in LSNA in CON rats after blockade of sympathoinhibitory neuropeptide Y Y1 receptors. ArcN InsR expression was not increased in OP rats. Collectively, these data indicate that obesity increases SNA, in part via increased InsR signaling and downstream PVN MC3/4R.


2008 ◽  
Vol 105 (3) ◽  
pp. 907-914 ◽  
Author(s):  
Keshore R. Bidasee ◽  
Hong Zheng ◽  
Chun-Hong Shao ◽  
Sheeva K. Parbhu ◽  
George J. Rozanski ◽  
...  

The present study was undertaken to assess cardiac function and characterize β-adrenoceptor subtypes in hearts of diabetic rats that underwent exercise training (ExT) after the onset of diabetes. Type 1 diabetes was induced in male Sprague-Dawley rats using streptozotocin. Four weeks after induction, rats were randomly divided into two groups. One group was exercised trained for 3 wk while the other group remained sedentary. At the end of the protocol, cardiac parameters were assessed using M-mode echocardiography. A Millar catheter was also used to assess left ventricular hemodynamics with and without isoproterenol stimulation. β-Adrenoceptors were assessed using Western blots and [3H]dihydroalprenolol binding. After 7 wk of diabetes, heart rate decreased by 21%, fractional shortening by 20%, ejection fraction by 9%, and basal and isoproterenol-induced dP/d t by 35%. β1- and β2-adrenoceptor proteins were reduced by 60% and 40%, respectively, while β3-adrenoceptor protein increased by 125%. Ventricular homogenates from diabetic rats bound 52% less [3H]dihydroalprenolol, consistent with reductions in β1- and β2-adrenoceptors. Three weeks of ExT initiated 4 wk after the onset of diabetes minimized cardiac function loss. ExT also blunted loss of β1-adrenoceptor expression. Interestingly, ExT did not prevent diabetes-induced reduction in β2-adrenoceptor or the increase of β3-adrenoceptor expression. ExT also increased [3H]dihydroalprenolol binding, consistent with increased β1-adrenoceptor expression. These findings demonstrate for the first time that ExT initiated after the onset of diabetes blunts primarily β1-adrenoceptor expression loss, providing mechanistic insights for exercise-induced improvements in cardiac function.


2021 ◽  
Vol 20 (1) ◽  
pp. 117-131
Author(s):  
Pitipat Kitpipatkun ◽  
◽  
Catthareya Sukwan ◽  

Echocardiography is a useful technique for diagnosing cardiovascular disease that is safe, reproducible and accurate. A comprehensive understanding of echocardiographic parameters in different age and sex is useful for cardiovascular study. Thirty Sprague-Dawley rats of both sexes at different age underwent repetitive echocardiography. The characteristics of early and late diastolic waves through the mitral inflow depend on the heart rate. The rats had fast heart rates, with early and late diastolic Doppler flows commonly fused. Several parameters in male rats were higher than in females except for ejection fraction, fractional shortening, isovolumetric relaxation time, pre-ejection fraction and ejection time that did not differ. Different age, sex, breed and anesthesia protocol can all cause diverse results. Rat echocardiography can be potentially used as a model for human cardiovascular research. Results revealed changes in echocardiographic parameters in different age and sex to better understand normal cardiovascular functions in rat model


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Xia Zhang ◽  
Xiaohui Wang ◽  
Tuanzhu Ha ◽  
Li Liu ◽  
He Ma ◽  
...  

We have previously shown that increased expression of endothelial heat shock protein A12B (HSPA12B) attenuates LPS-induced cardiac dysfunction. MicroRNA-126 (miR-126) specifically targets adhesion molecules in endothelial cells. This study examined the role of miR-126 in HSPA12B-induced cardioprotection in sepsis. Endothelial HSPA12B-/- (n=6) and wild type (WT, n=6) mice were subjected to cecal ligation and puncture (CLP)-induced sepsis. Sham surgery served as sham control (n=6). Cardiac function was examined by echocardiography before and 6 h after CLP. CLP sepsis significantly decreased ejection fraction (EF%) by 34.8% and fractional shortening (%FS) by 43.1% in WT mice. EF% and FS% values in HSPA12B-/- septic mice showed further decreases of 19.9% and 22.5% compared with WT septic mice. The levels of ICAM1 and VCAM1 and the infiltration of immune cells (macrophages and neutrophils) into the myocardium of HSPA12B-/- septic mice were markedly greater than WT septic mice. The vascular permeability in HSPA12B-/- septic mice was much more severe than in WT septic mice. Importantly, the levels of circulating miR-126 in HSPA12B-/- septic mice were much lower than in WT septic mice. To examine whether decreased miR-126 is responsible for cardiac dysfunction in HSPA12B-/- septic mice, we loaded exosomes with miR-126 by transfection of bone marrow stromal cells with miR-126 mimics followed by isolation of exosomes 24 hours after transfection. Scrambled miR served as the miR control (miR-control). Exosomes loaded with miR-126 or miR-control were delivered into the myocardium through the right carotid artery immediately after induction of CLP (n=5-6/group). Cardiac function was significantly improved by delivery of miR-126 into the myocardium as evidenced by increased the values of EF% (51%) and FS% (59%), when compared with HSPA12B-/- septic mice. MiR-126 delivery significantly suppressed the expression of adhesion molecules, reduced immune cell infiltration in the myocardium, and improved vascular permeability in HSPA12B-/- septic mice. Delivery of miR-control did not alter cardiac dysfunction in HSPA12B-/- septic mice. We conclude that miR-126 plays a critical protective role in endothelial HSAP12B in preservation of cardiac function in sepsis.


Sign in / Sign up

Export Citation Format

Share Document