scholarly journals Development of Novel Method for Immobilizing TMAH-Degrading Microbe into Pellet and Characterization Tool, for Verifying Its Robustness in Electronics Wastewater Treatment

Author(s):  
Seungjoon Chung ◽  
Jeongyun Choi ◽  
Jinwook Chung

This study describes an immobilization method of enriched microorganism, for robustly degrading organic compounds, including tetramethyl ammonium hydroxide (TMAH) in electronics wastewater without an increase of total organic carbon (TOC) in effluent. The enriched TMAH degrading bacteria was entrapped inside the pellets through polymerization. Polymerization conditions were optimized in terms of long-term TOC leak tests of pellet. Among several methods, a differential scanning calorimetry (DSC) analysis was found to be effective for the hands-on evaluation of stability in pellet. Stable pellets showed less than 10 J/g of curing heat by DSC analysis. This method is suitable for the optimization of polymerization conditions and controlling the quality of pellets. The removal efficiency of TMAH was over 95% and effluent concentration of TOC was below 100 ppb. The viability test results revealed that entrapped microorganisms were actively survived after five months of operations. This immobilization method is strongly suggested as a new strategy for the wastewater reuse process in low-strength electronics wastewater.

2014 ◽  
Vol 16 (10) ◽  
pp. 4510-4514 ◽  
Author(s):  
Yuchao Lu ◽  
Peng Wei ◽  
Yuxin Pei ◽  
Hengfu Xu ◽  
Xiaoting Xin ◽  
...  

A novel method for an efficient regioselective acetylation of carbohydrates and diols in aqueous solution is described.


Author(s):  
Ignazio Blanco ◽  
Traian Zaharescu

AbstractA series of ethylene-propylene-diene-terpolymer (EPDM)/polyhedral oligomeric silsesquioxane (POSS) composites at different percentage of POSS were prepared and subjected to γ-irradiation. Both irradiated and non-irradiated EPDM and composites were investigated by the means of thermal analysis to verify if the presence of POSS molecules is able to reduce the oxidation level of free radicals generated during the degradation and to evaluate the effects of the irradiation. EPDM composites at 1, 3 and 5 mass% of POSS were thus degraded in a thermogravimetric (TG) balance in dynamic heating conditions (25–700 °C), in both inert and oxidative atmosphere by flowing nitrogen and air respectively. Thermal characterization was then completed by carrying out Differential Scanning Calorimetry (DSC) analysis from sub-ambient to better highlight the melting of the polymer and polymer composites occurring just above the room temperature. FTIR spectroscopy was also performed for the prepared samples to check the presence of the molecular filler in the composites and for the TG’s residue at 700 °C, in order to evaluate its nature. DSC and TGA parameters were detected and discussed to have information about the effect of the degradation’s environment, the effect of irradiation on polymer stabilization and the effect of POSS content in the polymer matrix.


Author(s):  
Heber F. Amaral ◽  
Sebastián Urrutia ◽  
Lars M. Hvattum

AbstractLocal search is a fundamental tool in the development of heuristic algorithms. A neighborhood operator takes a current solution and returns a set of similar solutions, denoted as neighbors. In best improvement local search, the best of the neighboring solutions replaces the current solution in each iteration. On the other hand, in first improvement local search, the neighborhood is only explored until any improving solution is found, which then replaces the current solution. In this work we propose a new strategy for local search that attempts to avoid low-quality local optima by selecting in each iteration the improving neighbor that has the fewest possible attributes in common with local optima. To this end, it uses inequalities previously used as optimality cuts in the context of integer linear programming. The novel method, referred to as delayed improvement local search, is implemented and evaluated using the travelling salesman problem with the 2-opt neighborhood and the max-cut problem with the 1-flip neighborhood as test cases. Computational results show that the new strategy, while slower, obtains better local optima compared to the traditional local search strategies. The comparison is favourable to the new strategy in experiments with fixed computation time or with a fixed target.


Biologija ◽  
2008 ◽  
Vol 54 (3) ◽  
pp. 167-170 ◽  
Author(s):  
Laima Degutytė-Fomins ◽  
Rasa Žūkienė ◽  
Žaneta Maijorovaitė ◽  
Zita Naučienė ◽  
Vida Mildažienė

2012 ◽  
Vol 111 (3) ◽  
pp. 1801-1804 ◽  
Author(s):  
Moezzi Mehdi ◽  
Tamás Fekecs ◽  
István Zapf ◽  
Andrea Ferencz ◽  
Dénes Lőrinczy

Chemija ◽  
2020 ◽  
Vol 31 (3) ◽  
Author(s):  
Ehab AlShamaileh ◽  
Muayad Esaifan ◽  
Qusay Abu-Afifeh

The formation of metal oxide-based hydroxysodalite by alkali-activation of kaolinite is studied using X-ray diffraction (XRD) study and differential scanning calorimetry (DSC) analysis. Different metal oxides (CoO, MgO, FeO and SiO2) were used to form the metal oxide-based hydroxysodalite. The transformation from kaolinite into hydroxysodalite is confirmed by XRD. In the thermodynamic study, the maximum peak temperatures for DSC curves at various heating rates were used to determine the activation energy (Ea) of the hydroxysodalite formation. With magnesium oxide and cobalt oxide, the formation process was found to be exothermic while it was endothermic with iron oxide.


2019 ◽  
Vol 273 ◽  
pp. 71-76 ◽  
Author(s):  
Daniélen dos Santos Silva ◽  
Carine Souza dos Santos ◽  
Luzia Aparecida Pando ◽  
Mário Sérgio Rocha Gomes ◽  
Cleber Galvão Novaes ◽  
...  

Metals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 149 ◽  
Author(s):  
Anastasiya Toenjes ◽  
Heike Sonnenberg ◽  
Christina Plump ◽  
Rolf Drechsler ◽  
Axel von Hehl

A novel method for evolutionary material development by using high-throughput processing is established. For the purpose of this high-throughput approach, spherical micro samples are used, which have to be characterized, up-scaled to macro level and valued. For the evaluation of the microstructural state of the micro samples and the associated micro-properties, fast characterization methods based on physical testing methods such as calorimetry and universal microhardness measurements are developed. Those measurements result in so-called descriptors. The increase in throughput during calorimetric characterization using differential scanning calorimetry is achieved by accelerating the heating rate. Consequently, descriptors are basically measured in a non-equilibrium state. The maximum heating rate is limited by the possibility to infer the microstructural state from the calorimetric results. The substantial quality of the measured descriptors for micro samples has to be quantified and analyzed depending on the heating rate. In this work, the first results of the measurements of calorimetric descriptors with increased heating rates for 100Cr6 will be presented and discussed. The results of low and high heating rates will be compared and analyzed using additional microhardness measurements. Furthermore, the validation of the method regarding the suitability for the evolutionary material development includes up-scaling to macro level and therefore different sample masses will be investigated using micro and macro samples during calorimetry.


Sign in / Sign up

Export Citation Format

Share Document