scholarly journals Shared Control of an Electric Wheelchair Considering Physical Functions and Driving Motivation

Author(s):  
Lele Xi ◽  
Motoki Shino

Individuals with severe physical impairments have difficulties operating electric wheelchairs (EWs), especially in situations where fine steering abilities are required. Automatic driving partly solves the problem, although excessive reliance on automatic driving is not conducive to maintaining their residual physical functions and may cause more serious diseases in the future. The objective of this study was to develop a shared control system that can be adapted to different environments by completely utilizing the operating ability of the user while maintaining the motivation of the user to drive. The operating characteristics of individuals with severe physical impairments were first analyzed to understand their difficulties when operating EWs. Subsequently, a novel reinforcement learning-based shared control method was proposed to adjust the control weight between the user and the machine to meet the requirements of fully exploiting the operating abilities of the users while assisting them when necessary. Experimental results showed that the proposed shared control system gradually adjusted the control weights between the user and the machine, providing safe operation of the EW while ensuring full use of the control signals from the user. It was also found that the shared control results were deeply affected by the types of users.

2016 ◽  
Vol 25 (2) ◽  
pp. 107-121 ◽  
Author(s):  
Malek Njah ◽  
Mohamed Jallouli

AbstractThe electric wheelchair gives more autonomy and facilitates movement for handicapped persons in the home or in a hospital. Among the problems faced by these persons are collision with obstacles, the doorway, the navigation in a hallway, and reaching the desired place. These problems are due to the difficult manipulation of an electric wheelchair, especially for persons with severe disabilities. Hence, we tried to add more functionality to the standard wheelchair in order to increase movement range, security, environment access, and comfort. In this context, we have developed an automatic control method for indoor navigation. The proposed control system is mounted on the electric wheelchair for the handicapped, developed in the research laboratory CEMLab (Control and Energy Management Laboratory-Tunisia). The proposed method is based on two fuzzy controllers that ensure target achievement and obstacle avoidance. Furthermore, an extended Kalman filter was used to provide precise measurements and more effective data fusion localization. In this paper, we present the simulation and experimental results of the wheelchair navigation system.


1997 ◽  
Vol 36 (4) ◽  
pp. 135-142 ◽  
Author(s):  
Norihito Tambo ◽  
Yoshihiko Matsui ◽  
Ken-ichi Kurotani ◽  
Masakazu Kubota ◽  
Hirohide Akiyama ◽  
...  

A coagulation process for water purification plants mainly uses feedforward control based on raw water quality and empirical data and requires operator's help. We developed a new floc sensor for measuring floc size in a flush mixer to be used for floc control. A control system using model predictive control was developed on the floc size data. A series of experiments was performed to confirm controllability of settled water quality by controlling flush mixer floc size. An automatic control with feedback from the coagulation process was evaluated as practical and reliable. Finally this new control method was applied for actual plant and evaluated as practical.


Author(s):  
Shihuan Li ◽  
Lei Wang

For L4 and above autonomous driving levels, the automatic control system has been redundantly designed, and a new steering control method based on brake has been proposed; a new dual-track model has been established through multiple driving tests. The axle part of the model was improved, the accuracy of the transfer function of the model was verified again through acceleration-slide tests; a controller based on interference measurement was designed on the basis of the model, and the relationships between the controller parameters was discussed. Through the linearization of the controller, the robustness of uncertain automobile parameters is discussed; the control scheme is tested and verified through group driving test, and the results prove that the accuracy and precision of the controller meet the requirements, the robustness stability is good. Moreover, the predicted value of the model fits well with the actual observation value, the proposal of this method provides a new idea for avoiding car out of control.


Actuators ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 65
Author(s):  
Der-Fa Chen ◽  
Shen-Pao-Chi Chiu ◽  
An-Bang Cheng ◽  
Jung-Chu Ting

Electromagnetic actuator systems composed of an induction servo motor (ISM) drive system and a rice milling machine system have widely been used in agricultural applications. In order to achieve a finer control performance, a witty control system using a revised recurrent Jacobi polynomial neural network (RRJPNN) control and two remunerated controls with an altered bat search algorithm (ABSA) method is proposed to control electromagnetic actuator systems. The witty control system with finer learning capability can fulfill the RRJPNN control, which involves an attunement law, two remunerated controls, which have two evaluation laws, and a dominator control. Based on the Lyapunov stability principle, the attunement law in the RRJPNN control and two evaluation laws in the two remunerated controls are derived. Moreover, the ABSA method can acquire the adjustable learning rates to quicken convergence of weights. Finally, the proposed control method exhibits a finer control performance that is confirmed by experimental results.


2013 ◽  
Vol 846-847 ◽  
pp. 313-316 ◽  
Author(s):  
Xiao Yun Zhang

This paper presented a new method based on the Fuzzy self - adaptive PID for BLDCM. This method overcomes some defects of the traditional PID control. Such as lower control precision and worse anti - jamming performance. It dynamic model of BLDCM was built, and then design method for TS fuzzy PID model is given, At last, it compared simulation results of PID control method with TS Fuzzy PID control method. The results show that the TS Fuzzy PID control method has more excellent dynamic antistatic performances, as well as anti-jamming performance. The experiment shows that TS fuzzy PID control has the stronger adaptability robustness and transplant.


2013 ◽  
Vol 427-429 ◽  
pp. 488-491
Author(s):  
Chuan Jin ◽  
Xiao Mei Wang ◽  
Ke Liu Yang

At present, basketball training needs more scientific training methods and techniques. In order to obtain these training methods, it needs to acquisition training information in the process of basketball training. Therefore, in view of basketball training to establish information control system, research on basketball players training characteristics and the law of motion in the process of basketball training, using control theory method to carry out information processing and analysis, and then the use of scoring methods carry out the authority score evaluation on basketball trainings influencing factors, according to the weight values, these are obtained on the basis of the score, then to carry out add sum, finally to obtain the evaluation scores of basketball training information control system. And then according to the weight value, to undertake an analysis of the basketball training control process, the basketball training information control method is put forward. The analysis results show that information control system is mainly manifested in the basketball training information collection and transmission, training scheme decision of coaches decision system as well as the feedback of decision information, which will complete the whole system construction of basketball training information control.


2011 ◽  
Vol 383-390 ◽  
pp. 79-85
Author(s):  
Dong Yuan ◽  
Xiao Jun Ma ◽  
Wei Wei

Aiming at the problems such as switch impulsion, insurmountability for influence caused by nonlinearity in one tank gun control system which adopts double PID controller to realize the multimode switch control between high speed and low speed movement, the system math model is built up; And then, Model Reference Adaptive Control (MRAC) method based on nonroutine reference model is brought in and the adaptive gun controller is designed. Consequently, the compensation of nonlinearity and multimode control are implemented. Furthermore, the Tracking Differentiator (TD) is affiliated to the front of controller in order to restrain the impulsion caused by mode switch. Finally, the validity of control method in this paper is verified by simulation.


Sign in / Sign up

Export Citation Format

Share Document