scholarly journals Correlation between Polycyclic Aromatic Hydrocarbons in Wharf Roach (Ligia spp.) and Environmental Components of the Intertidal and Supralittoral Zone along the Japanese Coast

Author(s):  
Masato Honda ◽  
Koki Mukai ◽  
Edward Nagato ◽  
Seiichi Uno ◽  
Yuji Oshima

Polycyclic aromatic hydrocarbon (PAH) concentrations in wharf roach (Ligia spp.), as an environmental indicator, and in environmental components of the intertidal and supralittoral zones were determined, and the PAH exposure pathways in wharf roach were estimated. Wharf roaches, mussels, and environmental media (water, soil and sand, and drifting seaweed) were collected from 12 sites in Japan along coastal areas of the Sea of Japan. PAH concentrations in wharf roaches were higher than those in mussels (median total of 15 PAHs: 48.5 and 39.9 ng/g-dry weight (dw), respectively) except for samples from Ishikawa (wharf roach: 47.9 ng/g-dw; mussel: 132 ng/g-dw). The highest total PAH concentration in wharf roach was from Akita (96.0 ng/g-dw), followed by a sample from Niigata (85.2 ng/g-dw). Diagnostic ratio analysis showed that nearly all PAHs in soil and sand were of petrogenic origin. Based on a correlation analysis of PAH concentrations between wharf roach and the environmental components, wharf roach exposure to three- and four-ring PAHs was likely from food (drifting seaweed) and from soil and sand, whereas exposure to four- and five-ring PAHs was from several environmental components. These findings suggest that the wharf roach can be used to monitor PAH pollution in the supralittoral zone and in the intertidal zone.

1996 ◽  
Vol 31 (3) ◽  
pp. 485-504 ◽  
Author(s):  
Patricia Chow-Fraser ◽  
Barb Crosbie ◽  
Douglas Bryant ◽  
Brian McCarry

Abstract During the summer of 1994, we compared the physical and nutrient characteristics of the three main tributaries of Cootes Paradise: Spencer, Chedoke and Borer’s creeks. On all sampling occasions, concentrations of CHL α and nutrients were always lowest in Borer’s Creek and highest in Chedoke Creek. There were generally 10-fold higher CHL α concentrations and 2 to 10 times higher levels of nitrogen and phosphorus in Chedoke Creek compared with Spencer Creek. Despite this, the light environment did not differ significantly between Spencer and Chedoke creeks because the low algal biomass in Spencer Creek was balanced by a relatively high loading of inorganic sediments from the watershed. Laboratory experiments indicated that sediments from Chedoke Creek released up to 10 µg/g of soluble phosphorus per gram (dry weight) of sediment, compared with only 2 µg/g from Spencer Creek. By contrast, sediment samples from Spencer Creek contained levels of polycyclic aromatic hydrocarbon that were as high as or higher than those from Chedoke Creek, and much higher than those found in Borer’s Creek. The distribution of normalized PAH concentrations suggests a common source of PAHs in all three tributaries, most likely automobile exhaust, since there were high concentrations of fluoranthene and pyrene, both of which are derivatives of engine combustion.


1989 ◽  
Vol 21 (2) ◽  
pp. 161-165 ◽  
Author(s):  
S. I. Kayal ◽  
D. W. Connell

Results of the analysis of twenty-three composite sediment samples revealed that PAHs are widely distributed in the Brisbane River estuary. Mean concentrations for individual compounds, on a dry weight basis, ranged from 0.03 µg/g for dibenz [ah] anthracene to 2.34 µg/g for fluoranthene. Observed PAH assemblages were rich in compounds having pyrolytic origins. However, the presence of petroleum derived compounds was indicative of the importance of petroleum as a PAH source in the estuary. Petroleum refineries, a coal loading terminal and a major treated sewage outfall located at the mouth were not indicated as major contributing sources of PAH pollution in the estuary.


2021 ◽  
Vol 11 (4) ◽  
pp. 1856
Author(s):  
Masato Honda ◽  
Xuchun Qiu ◽  
Suzanne Lydia Undap ◽  
Takeshi Kimura ◽  
Tsuguhide Hori ◽  
...  

We investigated the pollution levels of 6 heavy metals and 29 dioxins (polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and dioxin-like polychlorinated biphenyls (DL-PCBs)) in intertidal and supratidal zones by using wharf roaches (Ligia spp.) collected from 12 sampling sites on the coast of Northeast Japan from November 2011 to June 2012. The total concentrations of heavy metals ranged from 177 to 377 µg/g-dry weight (dw), and the predominant metals were copper, zinc, and aluminum. The order of the detected level of heavy metals was zinc > aluminum > copper > cadmium > lead > chromium, and this trend was similar to a previous report. The total toxic equivalent (TEQ) value of the PCDD/Fs ranged from less than the limit of detection (<LOD) to 2.33 pg-TEQ/g-dw, and the predominant congener was octachlorodibenzodioxin (<LOD to 110 pg/g-dw). Compared with PCDD/Fs, DL-PCBs were detected at a predominantly higher level (total TEQ value: 0.64–27.79 pg-TEQ/g-dw). Detected levels of dioxins, especially DL-PCBs in the wharf roach, were like those in the bivalves. These results indicate that the wharf roach could reflect heavy metals and dioxin pollution in the supratidal zones and is a suitable environmental indicator for these environmental pollutants. This is the first study to investigate heavy metals, PCDD/Fs, and DL-PCBs pollution in coastal isopods in Japan.


Author(s):  
Jooyeon Hwang ◽  
Chao Xu ◽  
Robert J. Agnew ◽  
Shari Clifton ◽  
Tara R. Malone

Firefighters have an elevated risk of cancer, which is suspected to be caused by occupational and environmental exposure to fire smoke. Among many substances from fire smoke contaminants, one potential source of toxic exposure is polycyclic aromatic hydrocarbons (PAH). The goal of this paper is to identify the association between PAH exposure levels and contributing risk factors to derive best estimates of the effects of exposure on structural firefighters’ working environment in fire. We surveyed four databases (Embase, Medline, Scopus, and Web of Science) for this systematic literature review. Generic inverse variance method for random effects meta-analysis was applied for two exposure routes—dermal and inhalation. In dermal, the neck showed the highest dermal exposure increased after the fire activity. In inhalation, the meta-regression confirmed statistically significant increases in PAH concentrations for longer durations. We also summarized the scientific knowledge on occupational exposures to PAH in fire suppression activities. More research into uncontrolled emergency fires is needed with regard to newer chemical classes of fire smoke retardant and occupational exposure pathways. Evidence-based PAH exposure assessments are critical for determining exposure–dose relationships in large epidemiological studies of occupational risk factors.


2021 ◽  
Author(s):  
Lin Tao ◽  
M. Paul Chiarelli ◽  
Sylvia I. Pavlova ◽  
Joel L. Schwartz ◽  
James V. DeFrancesco ◽  
...  

Abstract Certain soil microbes resist and metabolize polycyclic aromatic hydrocarbons (PAHs). The same is true for certain skin microbes. Oral microbes have the potential to oxidize tobacco PAHs to increase their ability to cause cancer. We hypothesized that oral microbes that resist high levels of PAH in smokers exist and can be identified based on their resistance to PAHs. We isolated bacteria and fungi that survived long term in minimal media with PAHs as the sole carbon source from the oral cavity in 11 of 14 smokers and only 1 of 6 nonsmokers. Of bacteria genera that included species that survived harsh PAH exposure in vitro, all were found at trace levels on the oral mucosa, except for Staphylococcus and Actinomyces. Two PAH-resistant strains of Candida albicans (C. albicans) were isolated from smokers. C. albicans is found orally at high levels in tobacco users and some Candida species can metabolize PAHs. The two C. albicans strains were tested for metabolism of two model PAH substrates, pyrene and phenanthrene. The result showed that the PAH-resistant C. albicans strains did not metabolize the two PAHs. In conclusion, evidence for large scale oral microbial metabolism of tobacco PAHs by common oral microbes remains lacking.


2021 ◽  
Author(s):  
Zhao Wang ◽  
Xiangzi Jin ◽  
Han Yeong Kaw ◽  
Zakia Fatima ◽  
Maurizio Quinto ◽  
...  

Abstract Due to their wide distribution and availability, plant leaves can be considered interesting candidates as biomonitoring substrates for the evaluation of atmospheric pollution. In addition, some species can also retain historical information, for example, related to environmental pollution, due to their leaf class age. In this study, the content of polycyclic aromatic hydrocarbons (PAHs) in Abies holophylla and Pinus tabuliformis needle samples in function of their class age has been investigated to obtain information regarding the degradation constant for each PAH under investigation (α values ranging from 0.173 to 1.870) and to evaluate the possibility to correlate the presence of PAHs in needles with some important pollution environmental factors. Considering air pollutant variables registered in Jilin Province, significant correlations (at 95% confidence level) have been found between coal consumption per year and anthracene contents in needles, while fluorene, phenanthrene, and anthracene resulted correlated with coal consumption. Furthermore, it has been demonstrated that the total PAH concentration in needles, for both species, increased with their age (from 804 to 3604 ng g− 1 dry weight), showing a general tendency to accumulate these substances through years. PAH degradation rates increased instead with molecular complexity. This study could be considered a first trial to obtain historical environmental information by pine needles biomonitoring.


1988 ◽  
Vol 24 (1-4) ◽  
pp. 93-95 ◽  
Author(s):  
T. Nishikawa ◽  
S. Okabe ◽  
M. Aoki

Abstract The atmospheric radon daughters concentration at Fukui in the Japanese coastal region of the Sea of Japan shows a seasonal variation whose high values appear in summer and low values in winter. On the other hand, the radon daughters concentration in precipitation at Fukui and that in the maritime atmosphere over the Sea of Japan are high in winter and low in summer. It is concluded from these phenomena that the greater part of the continental radon and its daughters are transported by seasonal winds from Siberia and China to Japan across the Sea of Japan in winter. However, when the air masses approach the shore, the cumulonimbus grows and the heavy snowfall scavenges out the radon daughters from the air masses in large quantities at the Japanese coastal region of the Sea of Japan.


2012 ◽  
Vol 51 (No. 5) ◽  
pp. 239-247 ◽  
Author(s):  
M. Ciganek ◽  
J. Neca

Concentrations of 16 polycyclic aromatic hydrocarbons (PAH) were determined in porcine and bovine kidney, liver, lung, muscle and adipose tissue samples, and in eyeballs (lens and vitreous humour) in fattener pigs and cows. The total average PAH concentrations in individual organs were: 5.4, 6.3 (kidney); 3.8, 2.7 (liver); 4.6, 5.4 (lung); 3.6, 5.1 (muscle tissue); 0.05, 0.11 (adipose tissue); 57.9, 16.3 (lens) and 14, 6.4 (vitreous humour) for pigs and cows in ng/g of wet weight, respectively. Phenanthrene, naphthalene, pyrene and fluoranthene were predominant PAH present in samples. No significant differences (P &gt; 0.05) were found among distribution of PAH in animal bodies from several localities with various PAH exposure or between their levels in porcine and bovine organs and tissues, except for eyeballs. On the contrary, significant variations of PAH concentrations (P&nbsp;&lt;&nbsp;0.01) were found between species in the same tissues from the same stable. The highest total concentrations of PAH were found in porcine and bovine lenses. Analyses of porcine and/or bovine lenses for PAH content could be used for determination of animal exposure to these compounds.


Sign in / Sign up

Export Citation Format

Share Document