scholarly journals Differentiating Endurance-and Speed-Adapted Types of Elite and World Class Milers According to Biomechanical, Pacing and Perceptual Responses during a Sprint Interval Session

Author(s):  
Arturo Casado ◽  
Andrew Renfree ◽  
José Carlos Jaenes-Sánchez ◽  
Víctor Cuadrado-Peñafiel ◽  
Pedro Jiménez-Reyes

The aim was to compare pacing, biomechanical and perceptual responses between elite speed-and endurance-adapted milers during a sprint interval training session (SIT). Twenty elite and world-class middle-distance runners (male: n = 16, female: n = 4; 24.95 ± 5.18 years; 60.89 ± 7 kg) were classified as either speed- or endurance-adapted milers according to their recent performances at 800 m or longer races than 1500 m (10 subjects per group). Participants performed 10 repetitions of 100 m sprints with 2 min of active recovery between each, and performance, perceptual and biomechanical responses were collected. The difference between accumulated times of the last and the first five repetitions was higher in speed-adapted milers (ES = 1.07) displaying a more positive pacing strategy. A higher coefficient of variation (CV%) was displayed across the session by speed-adapted milers in average repetition time, contact time, and affective valence (ES ≥ 1.15). Speed-adapted milers experienced lower rates of valence after the 4th repetition excepting at the 8th repetition (ES ≥ 0.99). Speed-adapted milers may need to display a more positive pacing profile than endurance-adapted milers and, therefore, would experience lower levels of affective valence and a more rapid increase of ground contact time during a SIT.

2016 ◽  
Vol 11 (8) ◽  
pp. 1060-1066 ◽  
Author(s):  
Thimo Wiewelhove ◽  
Christian Raeder ◽  
Tim Meyer ◽  
Michael Kellmann ◽  
Mark Pfeiffer ◽  
...  

Purpose:To investigate the effect of repeated use of active recovery during a 4-d shock microcycle with 7 high-intensity interval-training (HIT) sessions on markers of fatigue. Methods:Eight elite male junior tennis players (age 15.1 ± 1.4 y) with an international ranking between 59 and 907 (International Tennis Federation) participated in this study. After each training session, they completed 15 min of either moderate jogging (active recovery [ACT]) or passive recovery (PAS) with a crossover design, which was interrupted by a 4-mo washout period. Countermovement-jump (CMJ) height, serum concentration of creatine kinase (CK), delayed-onset muscle soreness (DOMS), and perceived recovery and stress (Short Recovery and Stress Scale) were measured 24 h before and 24 h after the training program. Results:The HIT shock microcycle induced a large decrease in CMJ performance (ACT: effect size [ES] = –1.39, P < .05; PAS: ES = –1.42, P < .05) and perceived recovery (ACT: ES = –1.79, P < .05; PAS: ES = –2.39, P < .05), as well as a moderate to large increase in CK levels (ACT: ES = 0.76, P > .05; PAS: ES = 0.81, P >.05), DOMS (ACT: ES = 2.02, P < .05; PAS: ES = 2.17, P < .05), and perceived stress (ACT: ES = 1.98, P < .05; PAS: ES = 3.06, P < .05), compared with the values before the intervention. However, no significant recovery intervention × time interactions or meaningful differences in changes were noted in any of the markers between ACT and PAS. Conclusions:Repeated use of individualized ACT, consisting of 15 min of moderate jogging, after finishing each training session during an HIT shock microcycle did not affect exercise-induced fatigue.


2018 ◽  
Vol 25 (4) ◽  
pp. 15-20 ◽  
Author(s):  
Kamil Michalik ◽  
Szymon Glinka ◽  
Natalia Danek ◽  
Marek Zatoń

Abstract Introduction. So far there have been few studies on the effect of interval training with active recovery aimed at increasing aerobic power on the physical capacity of long-distance runners. Unlike standard interval training, this particular type of interval training does not include passive rest periods but combines high-intensity training with low-intensity recovery periods. The aims of the study were to determine the effect of aerobic power training implemented in the form of interval training with active recovery on the physical capacity of amateur long-distance runners as well as to compare their results against those of a group of runners who trained in a traditional manner and only performed continuous training. Material and methods. The study involved 12 recreational male long-distance runners, who were randomly divided into two groups, consisting of 6 persons each. Control group C performed continuous training 3 times a week (for 90 minutes, with approximately 65-85% VO2max). Experimental group E participated in one training session similar to the one implemented in group C and additionally performed interval training with active recovery twice a week. The interval training included a 20-minute warm-up and repeated running sprints of maximum intensity lasting 3 minutes (800-1,000 m). Between sprints, there was a 12-minute bout of running with an intensity of approximately 60-70% VO2max. The time of each repetition was measured, and the first one was treated as a benchmark in a given training unit. If the duration of a subsequent repetition was 5% shorter than that of the initial repetition, the subjects underwent a 15-minute cool-down period. A progressive treadmill test was carried out before and after the 7-week training period. The results were analysed using non-parametric statistical tests. Results. VO2max increased significantly both in group E (p < 0.05; d = 0.86) and C (p < 0.05; d = 0.71), and there was an improvement in effort economy at submaximal intensity. Although the differences were not significant, a much greater change in the post-exercise concentrations of lactate and H+ ions was found in group E. Conclusions. The study showed that interval training with active recovery increased VO2max in amateur runners with higher initial physical capacity and stimulated adaptation to metabolic acidosis more than continuous training.


Author(s):  
Norah MacMillan

Short duration interval training is a time-efficient exercise strategy that can improve fitness through changes in metabolic, cardiovascular and performance related variables. Studies have examined the positive effects of maximal intensity exercise (≥100% VO2max) on metabolic and performance variables in recreationally active individuals and trained athletes. The intensity of interval training required to cause improvements in aerobic fitness is unknown. This study will look at the performance related adaptations that occur with three different exercise intensities of interval training matched in terms of duration, frequency and type of exercise. Sixteen recreationally active individuals, both males (n=9, age = 23.3±3.3, VO2max = 44.2±6.5) and females (n=6, age = 21.5±0.7, VO2max = 39.7±5.4) were randomly assigned to one of three groups who trained using intervals at 120% VO2max (n=5), 90% VO2max (n=4) or 65% VO2max (n=7). The participants performed 14 days of training spread over 4 weeks that consisted of 8-12 repeats of 1-minute cycling at the prescribed intensity with 1-minute active recovery between intervals. Training increased time to fatigue in the 90% VO2max and 120% VO2max group however not in the 65% VO2max group. The changes in VO2max before and after training were significant in the 90% VO2max group and the 120% VO2max group, however not between the 120% VO2max and 90% VO2max group (p≤0.05). Interval training at 90% and 120% VO2max stimulates analogous improvements in fitness. These results may be important for diseased or sedentary populations where very high-intensity and long duration exercise may not be well tolerated.


2019 ◽  
Vol 14 (10) ◽  
pp. 1357-1363 ◽  
Author(s):  
Paul A. Solberg ◽  
Will G. Hopkins ◽  
Gøran Paulsen ◽  
Thomas A. Haugen

Purpose:To quantify age of peak performance and performance improvements in the years preceding peak age in elite weightlifting and powerlifting athletes using results from powerlifting World Championships in 2003–2017 and weightlifting World Championships and Olympic Games in 1998–2017.Methods:Individual performance trends were derived by fitting a quadratic curve separately to each athlete’s performance and age data. Effects were evaluated using magnitude-based inferences.Results:Peak age (mean [SD]) was 35 (7) y for powerlifters and 26 (3) y for weightlifters, a large most likely substantial difference of 9, ±1 y (mean, 90% confidence limit). Men showed possibly higher peak age than women in weightlifting (0.8, ±0.7 y; small) and a possibly lower peak age in powerlifting (1.3, ±1.8 y; trivial). Peak age of athletes who ever won a medal was very likely less than that of nonmedalists in weightlifting (1.3, ±0.6 y; small), while the difference in powerlifters was trivial but unclear. Five-year improvements prior to peak age were 12% (10%) for powerlifters and 9% (7%) for weightlifters, a small possibly substantial difference (2.9, ±2.1%). Women exhibited possibly greater improvements than men in powerlifting (2.7, ±3.8%; small) and very likely greater in weightlifting (3.5, ±1.6%; small). Medalists possibly improved less than nonmedalists among powerlifters (−1.7, ±2.3%; small), while the difference was likely trivial for weightlifters (2.3, ±1.8%).Conclusion:These novel insights on performance development will be useful for practitioners evaluating strategies for achieving success.


Author(s):  
Costas I. Karageorghis ◽  
Leighton Jones ◽  
Luke W. Howard ◽  
Rhys M. Thomas ◽  
Panayiotis Moulashis ◽  
...  

The authors investigated the effects of respite–active music (i.e., music used for active recovery in between high-intensity exercise bouts) on psychological and psychophysiological outcomes. Participants (N = 24) made four laboratory visits for a habituation, medium- and fast-tempo music conditions, and a no-music control. A high-intensity interval-training protocol comprising 8 × 60-s exercise bouts at 100% Wmax with 90-s active recovery was administered. Measures were taken at the end of exercise bouts and recovery periods (rating of perceived exertion [RPE], state attention, and core affect) and then upon cessation of the protocol (enjoyment and remembered pleasure). Heart rate was measured throughout. Medium-tempo music enhanced affective valence during exercise and recovery, while both music conditions increased dissociation (only during recovery), enjoyment, and remembered pleasure relative to control. Medium-tempo music lowered RPE relative to control, but the heart rate results were inconclusive. As predicted, medium-tempo music, in particular, had a meaningful effect on a range of psychological outcomes.


Author(s):  
Fernando G. Beltrami ◽  
Elena Roos ◽  
Marco von Ow ◽  
Christina M. Spengler

Purpose: To compare the cardiorespiratory responses of a traditional session of high-intensity interval training session with that of a session of similar duration and average load, but with decreasing workload within each bout in cyclists and runners. Methods: A total of 15 cyclists (maximal oxygen uptake [] 62 [6] mL·kg−1·min−1) and 15 runners ( 58 [4] mL·kg−1·min−1) performed both sessions at the maximal common tolerable load on different days. The sessions consisted of four 4-minute intervals interspersed with 3 minutes of active recovery. Power output was held constant for each bout within the traditional day, whereas power started 40 W (2 km·h−1) higher and finished 40 W (2 km·h−1) lower than average within each bout of the decremental session. Results: Average oxygen uptake during the high-intensity intervals was higher in the decremental session in cycling (89 [4]% vs 86 [5]% of , P = .002) but not in running (91 [4]% vs 90 [4]% of , P = .38), as was the time spent >90% of and the time spent >90% of peak heart rate. Average heart rate (P < .001), pulmonary ventilation (P < .001), and blood lactate concentration (P < .001) were higher during the decremental sessions in both cycling and running. Conclusions: Higher levels of physiological perturbations were achieved during decremental sessions in both cycling and running. These differences were, however, more prominent in cycling, thus making cycling a more attractive modality for testing the effects of a training intervention.


1996 ◽  
Vol 12 (1) ◽  
pp. 27-32 ◽  
Author(s):  
Louis M. Hsu

The difference (D) between a person's Verbal IQ (VIQ) and Performance IQ (PIQ) has for some time been considered clinically meaningful ( Kaufman, 1976 , 1979 ; Matarazzo, 1990 , 1991 ; Matarazzo & Herman, 1985 ; Sattler, 1982 ; Wechsler, 1984 ). Particularly useful is information about the degree to which a difference (D) between scores is “abnormal” (i.e., deviant in a standardization group) as opposed to simply “reliable” (i.e., indicative of a true score difference) ( Mittenberg, Thompson, & Schwartz, 1991 ; Silverstein, 1981 ; Payne & Jones, 1957 ). Payne and Jones (1957) proposed a formula to identify “abnormal” differences, which has been used extensively in the literature, and which has generally yielded good approximations to empirically determined “abnormal” differences ( Silverstein, 1985 ; Matarazzo & Herman, 1985 ). However applications of this formula have not taken into account the dependence (demonstrated by Kaufman, 1976 , 1979 , and Matarazzo & Herman, 1985 ) of Ds on Full Scale IQs (FSIQs). This has led to overestimation of “abnormality” of Ds of high FSIQ children, and underestimation of “abnormality” of Ds of low FSIQ children. This article presents a formula for identification of abnormal WISC-R Ds, which overcomes these problems, by explicitly taking into account the dependence of Ds on FSIQs.


Sports ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 34
Author(s):  
Laura Hottenrott ◽  
Martin Möhle ◽  
Alexander Ide ◽  
Sascha Ketelhut ◽  
Oliver Stoll ◽  
...  

Due to physiological and anatomical sex differences, there are variations in the training response, and the recovery periods following exercise may be different. High-intensity interval training (HIIT) protocols are well-suited to differentially investigate the course of recovery. This study was conducted to determine sex-specific differences in the recovery following HIIT intervals interspersed with recovery phases of different lengths. Methods: Well-trained cyclists and triathletes (n = 11 females, n = 11 males) participated in this study. There were no significant sex differences in maximal heart rate (HR), relative peak power to body mass and fat-free mass, training volume, and VO2max-percentiles (females: 91.8 ± 5.5 %, males: 94.6 ± 5.4 %). A 30 s Wingate test was performed four times, separated by different active recovery periods (1, 3, or 10 min). Lactate, HR, oxygen uptake, and subjective rating of exertion and recovery were determined. Results: For the recovery time of three and ten minutes, men showed significantly higher lactate concentrations (p = 0.04, p = 0.004). Contrary, HR recovery and subjective recovery were significant slower in women than in men. Conclusion: During HIIT, women may be more resistant to fatigue and have a greater ability to recover metabolically, but have a slower HR and subjective recovery.


Author(s):  
José Manuel García-De Frutos ◽  
Fco. Javier Orquín-Castrillón ◽  
Pablo Jorge Marcos-Pardo ◽  
Jacobo Á. Rubio-Arias ◽  
Alejandro Martínez-Rodríguez

High-Intensity Interval Training (HIIT) is described as a succession of short duration and maximum or near-maximum intensity efforts, alternated by recovery periods during which exercise continues at a lower intensity (active recovery) or is interrupted (passive recovery). Our objective was to evaluate the acute responses of three HIIT protocols of different work/rest interval times over the total time of the session, with self-selectable load and up to exhaustion, “all out”.The sample was composed of 22 male participants (n = 22) between 19 and 24 years old. The HIIT protocol consisted of one of the three HIIT protocols, of 30, 60 and 90 s density ratio 1:1 and with passive rest, with a total exercise duration of 10 min. The test was performed in a cycloergometer set in workload mode independent of the pedaling frequency. The comparison of the three HIIT protocols shows that the duration of the work/rest intervals, starting from 30 s of work, in the cycloergometer, there are no significant differences in the levels of lactate concentration in the blood, nor in the heart rate, since a similar amount is obtained in the three protocols. The percentage of maximum power developed reached in each HIIT protocol is related to the duration of the working intervals.


2005 ◽  
Vol 98 (6) ◽  
pp. 1985-1990 ◽  
Author(s):  
Kirsten A. Burgomaster ◽  
Scott C. Hughes ◽  
George J. F. Heigenhauser ◽  
Suzanne N. Bradwell ◽  
Martin J. Gibala

Parra et al. ( Acta Physiol. Scand 169: 157–165, 2000) showed that 2 wk of daily sprint interval training (SIT) increased citrate synthase (CS) maximal activity but did not change “anaerobic” work capacity, possibly because of chronic fatigue induced by daily training. The effect of fewer SIT sessions on muscle oxidative potential is unknown, and aside from changes in peak oxygen uptake (V̇o2 peak), no study has examined the effect of SIT on “aerobic” exercise capacity. We tested the hypothesis that six sessions of SIT, performed over 2 wk with 1–2 days rest between sessions to promote recovery, would increase CS maximal activity and endurance capacity during cycling at ∼80% V̇o2 peak. Eight recreationally active subjects [age = 22 ± 1 yr; V̇o2 peak = 45 ± 3 ml·kg−1·min−1 (mean ± SE)] were studied before and 3 days after SIT. Each training session consisted of four to seven “all-out” 30-s Wingate tests with 4 min of recovery. After SIT, CS maximal activity increased by 38% (5.5 ± 1.0 vs. 4.0 ± 0.7 mmol·kg protein−1·h−1) and resting muscle glycogen content increased by 26% (614 ± 39 vs. 489 ± 57 mmol/kg dry wt) (both P < 0.05). Most strikingly, cycle endurance capacity increased by 100% after SIT (51 ± 11 vs. 26 ± 5 min; P < 0.05), despite no change in V̇o2 peak. The coefficient of variation for the cycle test was 12.0%, and a control group ( n = 8) showed no change in performance when tested ∼2 wk apart without SIT. We conclude that short sprint interval training (∼15 min of intense exercise over 2 wk) increased muscle oxidative potential and doubled endurance capacity during intense aerobic cycling in recreationally active individuals.


Sign in / Sign up

Export Citation Format

Share Document