scholarly journals Identifying Ecological Corridors and Networks in Mountainous Areas

Author(s):  
Di Zhou ◽  
Wei Song

Since the 1950s, human activities have been driving economic development and land changes, hindering the conservation of biological habitats and landscape connectivity. Constructing ecological networks is an effective means to avoid habitat destruction and fragmentation. Mountain areas are hotspots of biological habitats and biodiversity; however, the pace of urbanization in mountain areas is also accelerating. To protect an ecosystem more effectively, it is necessary to identify ecological corridors and ecological networks. Therefore, based on the Minimal Cumulative Resistance model and taking Chongqing in China as an example, the identification of potential ecological corridors and the construction of an ecological network in Chongqing were realized using the Linkage Mapper software. The results were as follows: (1) From 2005 to 2015, the patch area of cultivated land and grassland in Chongqing decreased by 0.08% and 1.46%, respectively, while that of built-up areas increased by 1.5%. The fragmentation degree of cultivated land was higher, and the internal connectivity of forestry areas was worse. (2) In total, 24 ecological sources were selected, and 87 potential ecological corridors and 35 ecological nodes were generated using the Morphological Spatial Pattern Analysis and the Conefor2.6 software. The total length of the ecological network in Chongqing is 2524.34 km, with an average corridor length of 29.02 km. (3) The overall complexity and network efficiency are high, but the spatial distribution of ecological corridors is uneven, especially in the southwest of Chongqing.

Author(s):  
Shuang Song ◽  
Dawei Xu ◽  
Shanshan Hu ◽  
Mengxi Shi

Habitat destruction and declining ecosystem service levels caused by urban expansion have led to increased ecological risks in cities, and ecological network optimization has become the main way to resolve this contradiction. Here, we used landscape patterns, meteorological and hydrological data as data sources, applied the complex network theory, landscape ecology, and spatial analysis technology, a quantitative analysis of the current state of landscape pattern characteristics in the central district of Harbin was conducted. The minimum cumulative resistance was used to extract the ecological network of the study area. Optimized the ecological network by edge-adding of the complex network theory, compared the optimizing effects of different edge-adding strategies by using robustness analysis, and put forward an effective way to optimize the ecological network of the study area. The results demonstrate that: The ecological patches of Daowai, Xiangfang, Nangang, and other old districts in the study area are small in size, fewer in number, strongly fragmented, with a single external morphology, and high internal porosity. While the ecological patches in the new districts of Songbei, Hulan, and Acheng have a relatively good foundation. And ecological network connectivity in the study area is generally poor, the ecological corridors are relatively sparse and scattered, the connections between various ecological sources of the corridors are not close. Comparing different edge-adding strategies of complex network theory, the low-degree-first strategy has the most outstanding performance in the robustness test. The low-degree-first strategy was used to optimize the ecological network of the study area, 43 ecological corridors are added. After the optimization, the large and the small ecological corridors are evenly distributed to form a complete network, the optimized ecological network will be significantly more connected, resilient, and resistant to interference, the ecological flow transmission will be more efficient.


Land ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 265 ◽  
Author(s):  
Fangning Shi ◽  
Shiliang Liu ◽  
Yi An ◽  
Yongxiu Sun ◽  
Shuang Zhao ◽  
...  

Analyzing multi-scale changes in landscape connectivity is an important way to study landscape ecological processes and also an important method to maintain regional biodiversity. In this study, graph-based connectivity was used to analyze the dynamics of the connectivity of natural habitats in the Long Yangxia basin of upper Yellow River valley from 1995 to 2015. We used the core areas of the nature reserves as the source regions to construct ecological networks under different thresholds, so as to identify key areas that can maintain overall landscape connectivity. The results showed that, from 1995 to 2015, the landscape connectivity in the study area increased for the first 10 years, and, since 2005, has declined. On a spatial scale, we found that both the connectivity of the ecological network and the length of the corridor increased with landscape resistance. Our analysis demonstrates the importance of the natural habitat in the southern part of the study area where connectivity was higher, as well as the sensitivity of connectivity of the northern area to human activities. Both large and medium patches contribute greatly to the overall landscape connectivity, while attention needs to be paid to the protection and management of small patches as they played “stepping stone” roles in maintaining and improving landscape connectivity. The proportions of landscape types that served as corridors, listed in order of their contribution to connectivity, were grassland, forestland, wetland and cultivated land. This suggests that, in addition to focusing on the protection of grassland and forest land, the reasonable planning and utilization of wetland and cultivated land will also have an impact on landscape connectivity. In addition, the protection of and improvement in habitats in the Sanjiangyuan Nature Reserve is of great significance to enhance landscape connectivity. Our study provides a scientific basis to support and improve regional landscape connectivity and biodiversity conservation over the next decade.


Land ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 376
Author(s):  
Ling Xiao ◽  
Li Cui ◽  
Qun’ou Jiang ◽  
Meilin Wang ◽  
Lidan Xu ◽  
...  

The increasing scale of urbanization and human activities has resulted in the fragmentation of natural habitats, leading to the reduction of ecological landscape connectivity and biodiversity. Taking Nanping as the study area, the core areas with good connectivity were extracted as ecological sources using a morphological spatial pattern analysis (MSPA) and landscape connectivity index. Then the ecosystem service functions of the ecological sources were evaluated based on the InVEST model. Finally, we extracted the potential ecological corridor based on the land type, elevation and ecosystem service functions. The results showed that the ecological source with higher landscape connectivity is distributed in the north and there are clear landscape connectivity faults in the northern and southern regions. Moreover, the areas with high habitat quality, soil retention and water production are mainly distributed in the northern ecological source areas. The 15 potential ecological corridors extracted were distributed unevenly. Among them, the important ecological corridors formed a triangle network, while the general ecological corridors were concentrated in the northwest. Therefore, it is suggested that the important core patches in the north be protected, and the effective connection between the north and south be improved. These results can provide a scientific basis for ecological construction and hierarchical management of the ecological networks.


2020 ◽  
Vol 12 (21) ◽  
pp. 8960
Author(s):  
Yanjie Zhang ◽  
Wei Song

Using Linkage Mapper corridor simulation software, which is based on minimum cost distance, we identify ecological corridors and build potential ecological networks in response to recent land cover changes in Xinjiang, China. Based on the analysis of land use/cover changes, the change of landscape pattern index is also calculated. The results show that: (1) During the year 2000–2015, cultivated land and built-up areas of Xinjiang showed an increasing trend. Due to urbanization, Xinjiang’s landscape connectivity is getting worse, and the landscape is becoming more and more fragmented and isolated. (2) We have constructed 296 ecological corridors, with a total length of 2.71 × 104 km and an average corridor length of 90.98 km. A total of 145 ecological source patches and 500 ecological nodes were connected by 296 ecological corridors. (3) The ecological corridor of Xinjiang presents the characteristics of “dense-north and sparse-south” in space. The areas with dense distribution of ecological corridors mainly include Urumqi, Changji, Turpan, Tacheng, Kizilsu Kirgiz, Karamay, and Yining, and the Taklimakan desert fringe. The sparse distribution is mainly in the whole Taklimakan desert.


Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 344
Author(s):  
Haochen Yu ◽  
Jiu Huang ◽  
Chuning Ji ◽  
Zi’ao Li

A large-scale energy and chemical industry base is an important step in the promotion of the integrated and coordinated development of coal and its downstream coal-based industry. A number of large-scale energy and chemical industrial bases have been built in the Yellow River Basin that rely on its rich coal resources. However, the ecological environment is fragile in this region. Once the eco-environment is destroyed, the wildlife would lose its habitat. Therefore, this area has attracted wide attention regarding the development of the coal-based industry while also protecting the ecological environment. An ecological network could improve landscape connectivity and provide ideas for ecological restoration. This study took the Ningdong Energy and Chemical Industrial Base as a case study. Morphological spatial pattern analysis was applied to extract core patches. The connectivity of the core patches was evaluated, and then the ecological source patches were recognized. The minimum cumulative resistance model, hydrologic analysis and circuit theory were used to simulate the ecological network. Then, ecological corridors and ecological nodes were classified. The results were as follows: (1) The vegetation fractional coverage has recently been significantly improved. The area of core patches was 22,433.30 ha. In addition, 18 patches were extracted as source patches, with a total area of 9455.88 ha; (2) Fifty-eight potential ecological corridors were simulated. In addition, it was difficult to form a natural ecological corridor because of the area’s great resistance. Moreover, the connectivity was poor between the east and west; (3) A total of 52 potential ecological nodes were simulated and classified. The high-importance nodes were concentrated in the western grassland and Gobi Desert. This analysis indicated that restoration would be conducive to the ecological landscape in this area. Furthermore, five nodes with high importance but low vegetation fractional coverage should be given priority in later construction. In summary, optimizing the ecological network to achieve ecological restoration was suggested in the study area. The severe eco-environmental challenges urgently need more appropriate policy guidance in the large energy and chemical bases. Thus, the ecological restoration and ecological network construction should be combined, the effectiveness of ecological restoration could be effectively achieved, and the cost could also be reduced.


2020 ◽  
Vol 254 ◽  
pp. 120075 ◽  
Author(s):  
Xinya Guo ◽  
Xingqi Zhang ◽  
Shixun Du ◽  
Chao Li ◽  
Yim Ling Siu ◽  
...  

2012 ◽  
Vol 88 (2) ◽  
pp. 310-326 ◽  
Author(s):  
Michel Baguette ◽  
Simon Blanchet ◽  
Delphine Legrand ◽  
Virginie M. Stevens ◽  
Camille Turlure

2021 ◽  
Vol 209 ◽  
pp. 104039 ◽  
Author(s):  
Yohan Sahraoui ◽  
Charles De Godoy Leski ◽  
Marie-Lise Benot ◽  
Frédéric Revers ◽  
Denis Salles ◽  
...  

2021 ◽  
Vol 100 ◽  
pp. 05002
Author(s):  
Victoria Yavorska ◽  
Kateryna Kolomiyets ◽  
Valentina Trigub ◽  
Ihor Hevko ◽  
Olexandra Chubrei

Currently, the concept of sustainable development of nature and society is gaining relevance, a key aspect of which is the development of the ecological network. In Ukraine, there is a regulatory framework for the formation of an ecological network of three levels - Pan-European, National and regional. One of the important problems is that in the developed schemes of regional eco-networks should be interconnected to the eco-networks of neighboring regions and countries. The main features of the ecological network of the Odesa region are due to its coastal position and location mainly in the Steppe, partly Forest-Steppe landscape zones. The region includes vast areas of coastal territories and coastal waters - coastal zones, which concentrate unique protected areas. Mandatory basis for the formation of ecological networks is land use. The proposed concept of geoplanning is based on planning developments of the main components of the territory: the natural environment; population; economic activity. The basic characteristics of the natural environment are the landscape map and physical and geographical zoning of the territory. Maps of resilience of the natural environment to man-caused load, natural and ecological potential of the territory, levels of ecological and economic balance have already been drawn up. This series of maps for the needs of planning the territory of Ukraine should be continued by project maps of national and regional ecological networks, as well as maps of ecological capacity of the territory for population settlement, various economic activities and the general level of economic development in general. For the needs of spatial planning it is necessary to emphasize the levels of anthropogenic and urban pressures on the natural environment in the settlement of the population. Allocation of water fund lands in kind and strict regulation of their use is the main prerequisite for the formation of ecological networks of Ukraine and its regions.


2014 ◽  
Author(s):  
Timothée E Poisot ◽  
Benjamin Baiser ◽  
Jennifer A Dunne ◽  
Sonia Kéfi ◽  
Francois Massol ◽  
...  

The study of ecological networks is severely limited by (i) the difficulty to access data, (ii) the lack of a standardized way to link meta-data with interactions, and (iii) the disparity of formats in which ecological networks themselves are represented. To overcome these limitations, we conceived a data specification for ecological networks. We implemented a database respecting this standard, and released a R package ( `rmangal`) allowing users to programmatically access, curate, and deposit data on ecological interactions. In this article, we show how these tools, in conjunctions with other frameworks for the programmatic manipulation of open ecological data, streamlines the analysis process, and improves eplicability and reproducibility of ecological networks studies.


Sign in / Sign up

Export Citation Format

Share Document