scholarly journals Organophosphate Esters in Indoor Environment and Metabolites in Human Urine Collected from a Shanghai University

Author(s):  
Yujie Wang ◽  
Ming Yang ◽  
Fushun Wang ◽  
Xueping Chen ◽  
Minghong Wu ◽  
...  

In China, organophosphate esters (OPEs) are widely used in indoor environments. However, there is little information regarding the internal and external exposure of university students to OPEs. Therefore, in this study, nine OPEs and eight OPE metabolites (mOPEs) were measured in indoor dust and atmospheric PM2.5 samples from a university campus in Shanghai, as well as in urine samples collected from the university students. The total concentration of OPEs in the indoor dust in female dormitories (1420 ng/g) was approximately twice that in male dormitories (645 ng/g). In terms of indoor PM2.5, the highest OPE concentration was found in meeting rooms (105 ng/m3, on average), followed by chemical laboratories (51.2 ng/m3), dormitories (44.9 ng/m3), and offices (34.9 ng/m3). The total concentrations of the eight mOPEs ranged from 279 pg/mL to 14,000 pg/mL, with a geometric mean value of 1590 pg/mL. The estimated daily intake values based on the indoor dust and PM2.5 OPE samples (external exposure) were 1–2 orders of magnitude lower than that deduced from the concentration of urinary mOPEs (internal exposure), indicating that dermal contact, dust ingestion, and inhalation do not contribute significantly to OPE exposure in the general population. Moreover, additional exposure routes lead to the accumulation of OPEs in the human body.

Author(s):  
Nadeem Ali ◽  
Nabil A. Alhakamy ◽  
Iqbal M. I. Ismail ◽  
Ehtisham Nazar ◽  
Ahmed Saleh Summan ◽  
...  

In this study, we measured the occurrence of organophosphate esters (OPEs) and phthalates in the settled dust (floor and air conditioner filter dust) and in suspended particulate matter (PM10) from different microenvironments (households (n = 20), offices (n = 10) and hotels (n = 10)) of Jeddah, Saudi Arabia. Bis (2-Ethylhexyl) phthalate (DEHP) was the major pollutant (contributing >85% of total chemicals burden) in all types of indoor dust with a concentration up to 3,901,500 ng g−1. While dibutyl phthalate (DBP) and DEHP together contributed >70% in PM10 (1900 ng m−3), which indicate PM10 as a significant source of exposure for DBP and DEHP in different Saudi indoor settings. Tris (1-chloro-2-propyl) phosphate (TCPP) was the major OPE in PM10 with a concentration of up to 185 ng m−3 and the occurrence of OPEs in indoor dust varied in studied indoor settings. The estimated daily intake (EDI) of studied chemicals via dust ingestion and inhalation of PM10 was below the reference dose (RfD) of individual chemicals. However, estimated incremental lifetime cancer risk (ILCR) with moderate risk (1.5 × 10−5) for Saudi adults and calculated hazardous index (HI) of >1 for Saudi children from DEHP showed a cause of concern to the local public health.


2018 ◽  
Vol 25 (18) ◽  
pp. 18049-18058 ◽  
Author(s):  
Dong Niu ◽  
Yanling Qiu ◽  
Li Li ◽  
Yihui Zhou ◽  
Xinyu Du ◽  
...  

Abstract House dust is the main source of human exposure to flame retardants by ingestion. This study investigated the occurrence of polybrominated diphenyl ethers (PBDEs) in indoor dust from 22 houses in Shanghai, China. House dust was separately collected from the floor and elevated furnishings surface (mostly between 0.5 and 2 m height) for comparison. The concentrations of ∑22 PBDEs ranged from 19.4 to 3280 ng/g (with a geometric mean of 203 ng/g) and from 55.1 to 792 ng/g (with a geometric mean of 166 ng/g) in floor dust (FD) and elevated surface dust (ESD), respectively. BDE-209 was the predominant congener, accounting for about 73.1% of total PBDE burdens. In terms of congener profiles, the comparison of FD and ESD revealed no significant differences except for the ratio of BDE-47/BDE-99. ESD samples displayed a ratio of BDE-47/BDE-99 very similar to commercial penta-BDE products DE-71 while the ratio in FD was exceptionally higher. Significant correlation was found between concentrations of commercial penta-BDE compositions in FD and ESD (p < 0.05). Except for some occasional values, PBDE levels in house dust exhibited temporal stability. Human exposure to PBDEs via dust ingestion was estimated. The highest daily intake of PBDEs was for toddlers by using 95th percentile concentrations of PBDEs via high dust ingestion in FD (23.07 ng/kg bw/day). About 20-fold difference in exposure estimates between toddlers and adults supports that toddlers are facing greater risk from indoor floor dust. Expectedly, this study highlighted the point that residents in Shanghai were exposed to low doses of PBDEs in house dust.


Author(s):  
Maryam Zare Jeddi ◽  
Mohamad Eshaghi Gorji ◽  
Ivonne Rietjens ◽  
Jochem Louisse ◽  
Yuri Bruinen de Bruin ◽  
...  

This study aimed to estimate the exposure and related health risks of phthalates, and to assess the health risks from combined exposure to three of the phthalates sharing the same mode of action (anti-androgenicity) in children. We determined the internal exposure of 56 Iranian children and adolescents aged 6 to 18 years by analyzing seven urinary metabolites of five phthalates. The estimated daily intake values derived from the biomonitoring data ranged from 0.01 µg/kg bw/day for butyl benzyl phthalate (BBP), to 17.85 µg/kg bw/day for di(2-ethylhexyl) phthalate (DEHP). The risk assessment revealed that not only the exposure to the individual phthalates, but also the combined exposure to the three anti-androgenic phthalates (DEHP, DBP, BBP) did not raise a safety concern (hazard index values averaged 0.2). The range of maximum cumulative ratio values varied from around 1 for most individuals to around 2 in some individuals, indicating that the combined exposures were dominated by one and in some cases by two of the three anti-androgenic phthalates, especially dibutyl phthalate (DBP) and/or DEHP. Based on biomonitoring data, the overall combined exposure of Iranian children to phthalates does not raise a concern, while reduction of exposure is best focused on DEHP and DBP that showed the highest hazard quotient.


2019 ◽  
Vol 123 ◽  
pp. 57-71 ◽  
Author(s):  
Ioanna Katsikantami ◽  
Claudio Colosio ◽  
Athanasios Alegakis ◽  
Manolis N. Tzatzarakis ◽  
Elena Vakonaki ◽  
...  

2011 ◽  
Vol 11 (24) ◽  
pp. 12627-12645 ◽  
Author(s):  
J. H. Kim ◽  
S. S. Yum ◽  
S. Shim ◽  
S.-C. Yoon ◽  
J. G. Hudson ◽  
...  

Abstract. Aerosol size distribution, total concentration (i.e. condensation nuclei (CN) concentration, NCN), cloud condensation nuclei (CCN) concentration (NCCN), hygroscopicity at ~90% relative humidity (RH) were measured at a background monitoring site at Gosan, Jeju Island, south of the Korean Peninsula in August 2006, April to May 2007 and August to October 2008. Similar measurements took place in August 2009 at another background site (Baengnyeongdo Comprehensive Monitoring Observatory, BCMO) on the island of Baengnyeongdo, off the west coast of the Korean Peninsula. Both islands were found to be influenced by continental sources regardless of season and year. Average values for all of the measured NCCN at 0.2, 0.6 and 1.0% supersaturations (S), NCN, and geometric mean diameter (Dg) from both islands were in the range of 1043–3051 cm−3, 2076–4360 cm−3, 2713–4694 cm−3, 3890–5117 cm−3 and 81–98 nm, respectively. Although the differences in Dg and NCN were small between Gosan and BCMO, NCCN at various S was much higher at the latter, which is closer to China. Most of the aerosols were internally mixed and no notable differences in hygroscopicity were found between the days of strong pollution influence and the non-pollution days for both islands. During the 2008 and 2009 campaigns, critical supersaturation for CCN nucleation (Sc) for selected particle sizes was measured. Particles of 100 nm diameters had mean Sc of 0.19 ± 0.02% during 2008 and those of 81 and 110 nm diameters had mean Sc of 0.26 ± 0.07% and 0.17 ± 0.04%, respectively, during 2009. The values of the hygroscopicity parameter (κ), estimated from measured Sc, were mostly higher than the κ values obtained from the measured hygroscopic growth at ~90% RH. For the 2008 campaign, NCCN at 0.2, 0.6 and 1.0% S were predicted based on measured dry particle size distributions and various ways of representing particle hygroscopicity. The best closure was obtained when temporally varying and size-resolved hygroscopicity information from the HTDMA was used, for which the average relative deviations from the measured values were 28 ± 20% for 0.2% S (mostly under-prediction), 25 ± 52% for 0.6% (balanced between over- and under-prediction) and 19 ± 15% for 1.0% S (balanced). Prescribing a constant hygroscopicity parameter suggested in the literature (κ = 0.3) for all sizes and times resulted in average relative deviations of 28–41% where over-prediction was dominant. When constant hygroscopicity was assumed, the relative deviation tended to increase with decreasing NCCN, which was accompanied by an increase of the sub-100 nm fraction. These results suggest that hygroscopicity information for particles of diameters smaller than 100 nm is crucial for more accurate predictions of NCCN. For confirmation when κ = 0.17, the average κ for sub-100 nm particles in this study, was applied for sub-100 nm and κ = 0.3 for all other sizes, the CCN closure became significantly better than that with κ = 0.3 for all sizes.


2019 ◽  
Vol 12 (4) ◽  
pp. 527-534 ◽  
Author(s):  
Suzanne Kabrite ◽  
Christelle Bou-Mitri ◽  
Jessy El Hayek Fares ◽  
Hussein F. Hassan ◽  
Jocelyne Matar Boumosleh

Background and Aim: The safety and quality of dairy products are considered to be of significant importance to human health. Although antimicrobial drugs are essential for disease treatment in modern medicine, the use of these drugs can have undesired consequences for human and animal health. This study aimed to investigate the presence of tetracycline and penicillin residues in raw, pasteurized, and UHT cow's milk of different fat contents, as well as in the dairy products yogurt and labneh, a traditional Lebanese product. Materials and Methods: A total of 44 samples, 4 raw, 9 UHT, 9 pasteurized milk, 10 yogurt, and 12 labneh samples from common local brands available in the Lebanese market were collected from Keserwan regions in May 2016. Tetracycline and penicillin residues were determined using a competitive enzyme-linked immunosorbent assay (ELISA) technique. Results: The mean values for tetracycline and penicillin were all below the limit of detection (LOD) of the ELISA kit of a maximum standard concentration of 1.80 μg/kg and 4.00 μg/kg, respectively. All samples tested positive for antibiotic residues. The detection rate for tetracycline in milk (n=22) samples was 86.4% with a mean residues value of 1.16±0.70 μg/kg. The detection rate of tetracycline in labneh (n=12) and yogurt (n=10) samples was 50% for each with a mean value of 1.76±0.40 μg/kg and 0.63±0.12 μg/kg, respectively. As for penicillin residues, 90.9% of the milk (n=22) samples tested positive with a mean value of 0.52±0.25 μg/kg. The detection rate in labneh (n=12) and yogurt (n=10) samples was 0% for penicillin residues, where mean values were all below the LOD (<1.25 μg/kg) for these dairy products. None of the samples exceeded the maximum residue levels. The estimated dietary intake (EDI) for tetracycline and penicillin residues for all dairy products is 2.09 ng/kg body weight (BW)/day resulting in 0.007% of the acceptable daily intake (ADI) and 1.83 ng/kg BW/day resulting in 0.006% of the ADI, respectively. Conclusion: All EDI values were below the ADI set for each antibiotic residue and do not exceed relevant toxicological reference values. However, concerns might still be present from consumption of other animal food products containing residues. Moreover, the long-term exposure to such residues is still unknown as a result of bioaccumulation; it is a challenging process to determine the actual dietary consumption of foods containing antibiotic residues; hence, the human health risk cannot be easily predicted.


2018 ◽  
Vol 235 ◽  
pp. 358-364 ◽  
Author(s):  
Yi Chen ◽  
Jianzhang Fang ◽  
Lu Ren ◽  
Ruifang Fan ◽  
Jianqing Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document