scholarly journals Are We Ready for the Challenge of Banks 4.0? Designing a Roadmap for Banking Systems in Industry 4.0

2020 ◽  
Vol 8 (2) ◽  
pp. 32 ◽  
Author(s):  
Amir Mehdiabadi ◽  
Mariyeh Tabatabeinasab ◽  
Cristi Spulbar ◽  
Amir Karbassi Yazdi ◽  
Ramona Birau

The purpose of the present paper is to provide an advanced overview of the practical applications of Banking 4.0 in Industry 4.0. This paper examines the technology trends in the Fourth Industrial Revolution and identifies the key indicators behind the creation of a strategic map for the fourth-generation banks and their readiness to enter Industry 4.0. This paper examines a systematic review of fully integrated Banking 4.0 and the application of the technologies of Industry 4.0 and illustrates a distinct pattern of integration of Banking 4.0 and Industry 4.0. One of the prominent features of this article is the performance of successful global banks in applying these technologies. The results showed that Banking 4.0 in Industry 4.0 is an integrative value creation system consisting of six design principles and 14 technology trends. The roadmap designed for banks to enter Industry 4.0 and how they work with industrial companies will be a key and important guide.

Author(s):  
Hanaa Abdulraheem Yamani ◽  
Waleed Tageldin Elsigini

The current era is witnessing many changes on various levels. The information and communication revolutions are considered one of the important changes which has cast a shadow over how different institutions in society work via the phenomenon of digitization. As some of the most important institutions of society, industrial companies have been responding to this phenomenon of digital transformation to improve products and customer service while achieving a significant profitable return. This response by these institutions to the digital transformation has resulted in the emergence of the so-called fourth industrial revolution. In this context, this chapter reviews the definition of digital transformation as well as its dimensions, benefits, and obstacles. It also comments on the future of digital transformation and its relationship with industry. Ultimately it presents the fourth industrial revolution in terms of its definition, history, criteria, benefits, and the challenges it faces moving into the future.


Author(s):  
Pedro Fernandes Anunciação ◽  
Vitor Manuel Lemos Dinis ◽  
Francisco Madeira Esteves

Industry 4.0 marks the beginning of the so-called fourth industrial revolution. The new emerging information technologies, such as internet of things, cloud computing, machine learning, artificial intelligence, among others, have challenged the management and organization of industrial companies. They have now shorter market response times, higher quality requirements, and customization needs, which challenges many industrial areas from production to maintenance, from design to asset management. The maintenance and asset management condition and the reliability of production lines are closely linked and constitute key areas of good industrial operation. This work seeks to present a roadmap proposal for the management of industrial assets from maintenance management. In addition, it seeks to identify the key elements for a roadmap design and proposes a set of management questions to assess maintenance maturity.


2019 ◽  
Vol 11 (3) ◽  
pp. 756 ◽  
Author(s):  
Wen-Hsien Tsai ◽  
Po-Yuan Chu ◽  
Hsiu-Li Lee

The industrial revolution has grown to the fourth generation, or so-called Industry 4.0. The literature on Industry 4.0 is quite extensive and involves many different dimensions; however, production costs under Industry 4.0 have seldom been discussed. On the other hand, environmental problems are increasingly serious nowadays. Activity-Based Costing is a mature accounting method that can easily trace direct and indirect product costs, based on activities, as well as trace the carbon tax to products, which may lead to different product combinations, in order to reduce environment problems. Thus, the purpose of this paper is to propose a green activity-based costing production planning model under Industry 4.0. In order to make the paper more realistic, we suggest three models with five possible scenarios: normal and material cost fluctuation, material cost discount, and carbon tax with the related cost function. The Aluminum-Alloy Wheel industry was chosen as the illustrative industry to present the results. The model provides managers with a way to deal with the cost problem under Industry 4.0 and to be able to handle the environmental issues in making production decisions. This paper also provides suggestions for governments that have not considered carbon taxation.


2019 ◽  
Vol 31 (5) ◽  
pp. 1023-1043 ◽  
Author(s):  
Reginaldo Carreiro Santos ◽  
José Luís Martinho

Purpose In recent years, the development and application of innovative and disruptive technologies in manufacturing environments is shaping the fourth industrial revolution, also known as Industry 4.0. The purpose of this paper is to describe a tool to assess the maturity level in implementing Industry 4.0 concepts and technologies in manufacturing companies. Design/methodology/approach Using a framework to develop maturity models found in literature, three main steps were taken: the model design from the literature review on industry 4.0 and the comparative analysis of existing models; interviews with engineers and managers of relevant industries; and pilot tests in two relevant industrial companies. Findings The proposed maturity model has 41 variables considering five dimensions (organizational strategy, structure and culture; workforce; smart factories; smart processes; smart products and services). The studied companies showed different levels of Industry 4.0 implementation. According to respondents, the model is useful in making an initial diagnosis and establishes a roadmap to proceed the implementation. Practical implications Empirical evidence supports the relevance of the proposed model and its practical usefulness. It can be used to measure the current state (initial diagnostic and monitoring assessments), and to plan the future desired state (goal), identifying which transformational capabilities should be developed. Originality/value The literature review did not return an enough complete maturity model to guide a self-administered assessment. Therefore, the proposed model is a valuable tool for companies and researchers to understand the I4.0 phenomenon, plan and monitor the transformation actions.


Author(s):  
Vivek Agrawal ◽  
Seemant Kumar Yadav ◽  
R. P. Mohanty ◽  
Anand M. Agrawal

Industry 4.0, the fourth-generation industrial revolution, is not only changing the manufacturing industry but others also, like the construction industry and the related supply chain issues. The construction industry has its own challenges (e.g., temporary work and involvement of high coordination, among others). This study is an attempt to explore the enablers to overcome these issues and prioritize them. Decisions are more complex if they are intangible, non-expressible, qualitative, etc. To overcome this problem in the present study, AHP technique is used. With the help of AHP, 4 enablers and 14 sub-enablers of construction supply chain are prioritized. E-supply chain management is ranked first followed by digitization, tracking and localization, and cloud computing. In the case of sub-enablers, web service technology comes at first rank whereas management information system comes at 14th rank. This study will help the managers and professionals in construction organizations in building a good setup by focusing on these explored enablers.


2019 ◽  
Vol 20 (3) ◽  
pp. 89-102
Author(s):  
Wioletta Ocieczek ◽  
Bożena Gajdzik

The purpose of this publication was to prepare content about the evolution of socially responsible business in industry 4.0. Thesis presents key areas of the responsible business at level 4.0. Thesis was created based on literary study and presents contribution of its authors into knowledge development in scope of area changes in SR on Industry 4.0 level. Thesis introduction reminds the essence of SR, at the next stage in the reference to selected conceptual approaches the image of Industry 4.0 was presented. Thesis outlines the specification of Industry 4.0 called fourth industrial revolution or industry of fourth generation. Next section of the work briefly describes studies in area of responsible business 4.0 which are currently very rare. The last part of this thesis presents the main directions of responsibility impact in industry 4.0, and discusses the conclusions regarding the challenges for SR development. The work ends with a summary together with an indication of the main directions of development of responsibility in Industry 4.0.


2021 ◽  
pp. 097226292199682
Author(s):  
Ritika Gupta

Digitalization and intelligization is the need of the hour in today’s world. The manufacturing industry is, in fact, moving towards the fourth-generation industry, which we termed as Industry 4.0 or the Fourth Industrial revolution, which is defined as a new level of organization and control over the entire value chain of the life cycle of products; it is geared towards increasingly individualized customer requirements. Industry 4.0 is all about talking in terms of big data, technology, cyber security, the Internet of Things (IoT) and so on. This study is done to understand the new emerging technology in data exchange and automation, popularly known as Industry 4.0, in terms of banking sector with context to the Indian banking sector. The study focuses on studying banks in a digitalized word and what are the challenges that banks face. How banks cope up with digitalization, keeping customers at priority. This study centred on incorporating articles published in recent years to establish knowledge on the topic and to further identify areas for future research.


Author(s):  
Humyun Fuad Rahman ◽  
Mukund Nilakantan Janardhanan ◽  
Peter Axel Nielsen

The permutation flow shop scheduling problem is one of the popular problems in operations research due to its complexity and also its practical applications in industries. With the fourth generation industrial revolution, decisional aspects in make to order flow shop environment needs to be decentralized and autonomous. One of the aspects is to consider a real-time or dynamic production environment where customers place orders into the system dynamically and the decision maker has to decide whether the order can be accepted considering the available production capacity and how to schedule the jobs of an accepted order. To answer these research questions, in this chapter, the authors introduce a new decision-making, real-time strategy intended to yield flexible and efficient flow shop production schedules with and without setup conditions, Numerical experiments based on realistic problem scenarios show the superiority of the proposed real-time approach over traditional right shifting approaches.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5972
Author(s):  
Katarzyna Szum ◽  
Joanicjusz Nazarko

Researchers and practitioners argue that in the global context of the Fourth Industrial Revolution, also labelled Industry 4.0, the regional dimension of industrial development remains equally essential. A region that effectively implements the concept of Industry 4.0 can accelerate by enhancing the manufacturing energy efficiency, thus contributing to the goals of the “Green Deal” policy. Therefore, to support the policy-making process, it is necessary to develop analytical tools exploring the determinants of the Industry 4.0 development. This paper presents a methodology of strategic analysis of a region in terms of the Industry 4.0 development potential. The core of the methodology is an extended Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis. The study identifies regional strengths and weaknesses, external incentives and disincentives, internal opportunities and threats, and external opportunities and threats with regard to the development of Industry 4.0, related technologies and the potential of increasing manufacturing energy efficiency. The research procedure is exemplified by the case of Podlaskie Voivodeship in Poland. The results of this study demonstrate the robustness of the proposed approach. The elaborated methodology can be used by decision-makers in designing strategies for the development of fourth-generation industry at a regional level.


2021 ◽  
Vol 11 (3) ◽  
pp. 1256
Author(s):  
Marco Bortolini ◽  
Maurizio Faccio ◽  
Francesco Gabriele Galizia ◽  
Mauro Gamberi ◽  
Francesco Pilati

Industry 4.0 emerged in the last decade as the fourth industrial revolution aiming at reaching greater productivity, digitalization and operational efficiency standard. In this new era, if compared to automated assembly systems, manual assembly systems (MASs) are still characterized by wide flexibility but poor productivity levels. To reach acceptable performances in terms of both productivity and flexibility, higher automation levels are required to increase the skills and capabilities of the human operators with the aim to design next-generation assembly systems having higher levels of adaptivity and collaboration between people and automation/information technology. In the current literature, such systems are called adaptive automation assembly systems (A3Ss). For A3Ss, few design approaches and industrial prototypes are available. This paper, extending a previous contribution by the Authors, expands the lacking research in the field and proposes a general framework guiding toward A3S effective design and validation. The framework is applied to a full-scale prototype, highlighting its features together with the technical- and human-oriented improvements arising from its adoption. Specifically, evidence from this study show a set of benefits from adopting innovative A3Ss in terms of reduction of the assembly cycle time (about 30%) with a consequent increase of the system productivity (about 45%) as well as relevant improvements of ergonomic posture indicators (about 15%). The definition of a general framework for A3S design and validation and the integration of the productivity and ergonomic analysis of such systems are missing in the current literature, representing an element of innovation. Globally, this research paper provides advanced knowledge to guide research, industrial companies and practitioners in switching from traditional to advanced assembly systems in the emerging Industry 4.0 era matching current industrial and market features.


Sign in / Sign up

Export Citation Format

Share Document