scholarly journals The Potential of LiDAR and UAV-Photogrammetric Data Analysis to Interpret Archaeological Sites: A Case Study of Chun Castle in South-West England

2021 ◽  
Vol 10 (1) ◽  
pp. 41
Author(s):  
Israa Kadhim ◽  
Fanar M. Abed

With the increasing demands to use remote sensing approaches, such as aerial photography, satellite imagery, and LiDAR in archaeological applications, there is still a limited number of studies assessing the differences between remote sensing methods in extracting new archaeological finds. Therefore, this work aims to critically compare two types of fine-scale remotely sensed data: LiDAR and an Unmanned Aerial Vehicle (UAV) derived Structure from Motion (SfM) photogrammetry. To achieve this, aerial imagery and airborne LiDAR datasets of Chun Castle were acquired, processed, analyzed, and interpreted. Chun Castle is one of the most remarkable ancient sites in Cornwall County (Southwest England) that had not been surveyed and explored by non-destructive techniques. The work outlines the approaches that were applied to the remotely sensed data to reveal potential remains: Visualization methods (e.g., hillshade and slope raster images), ISODATA clustering, and Support Vector Machine (SVM) algorithms. The results display various archaeological remains within the study site that have been successfully identified. Applying multiple methods and algorithms have successfully improved our understanding of spatial attributes within the landscape. The outcomes demonstrate how raster derivable from inexpensive approaches can be used to identify archaeological remains and hidden monuments, which have the possibility to revolutionize archaeological understanding.

2020 ◽  
Vol 9 (4) ◽  
pp. 262 ◽  
Author(s):  
Maurizio Pollino ◽  
Sergio Cappucci ◽  
Ludovica Giordano ◽  
Domenico Iantosca ◽  
Luigi De Cecco ◽  
...  

Earthquake-induced rubble in urbanized areas must be mapped and characterized. Location, volume, weight and constituents are key information in order to support emergency activities and optimize rubble management. A procedure to work out the geometric characteristics of the rubble heaps has already been reported in a previous work, whereas here an original methodology for retrieving the rubble’s constituents by means of active and passive remote sensing techniques, based on airborne (LiDAR and RGB aero-photogrammetric) and satellite (WorldView-3) Very High Resolution (VHR) sensors, is presented. Due to the high spectral heterogeneity of seismic rubble, Spectral Mixture Analysis, through the Sequential Maximum Angle Convex Cone algorithm, was adopted to derive the linear mixed model distribution of remotely sensed spectral responses of pure materials (endmembers). These endmembers were then mapped on the hyperspectral signatures of various materials acquired on site, testing different machine learning classifiers in order to assess their relative abundances. The best results were provided by the C-Support Vector Machine, which allowed us to work out the characterization of the main rubble constituents with an accuracy up to 88.8% for less mixed pixels and the Random Forest, which was the only one able to detect the likely presence of asbestos.


The classification of remotely sensed data on thematic map is a challenging task from very long time and it is also a goal of today’s remote sensing because of complexity level of earth surface and selection of suitable classification technique. Hence selection of best classification technique in remote sensing will give better result. Classification of remotely sensed data is an important task within the domain of remote sensing and it is outlined as processing technique that uses a systematic approach to group the pixels into different classes. In this study, we have classified the multispectral data of Udupi district, Karnataka, India using different classifier including Support Vector Machine (SVM), Maximum Likelihood, Minimum Distance and Mahalanobis Distance classifier. The data of dimension 3980x3201 pixels are collected from a Landsat-3 satellite. Performance of the each classifier is compared by conducting accuracy assessment test and Kappa analysis. The obtained results shows that SVM will give accuracy of 95.35% and kappa value of 0.9408 respectively when compared other classifier, hence effectiveness of SVM is a good choice for classifying remotely sensed data.


Author(s):  
Nikifor Ostanin ◽  
Nikifor Ostanin

Coastal zone of the Eastern Gulf of Finland is subjected to essential natural and anthropogenic impact. The processes of abrasion and accumulation are predominant. While some coastal protection structures are old and ruined the problem of monitoring and coastal management is actual. Remotely sensed data is important component of geospatial information for coastal environment research. Rapid development of modern satellite remote sensing techniques and data processing algorithms made this data essential for monitoring and management. Multispectral imagers of modern high resolution satellites make it possible to produce advanced image processing, such as relative water depths estimation, sea-bottom classification and detection of changes in shallow water environment. In the framework of the project of development of new coast protection plan for the Kurortny District of St.-Petersburg a series of archival and modern satellite images were collected and analyzed. As a result several schemes of underwater parts of coastal zone and schemes of relative bathymetry for the key areas were produced. The comparative analysis of multi-temporal images allow us to reveal trends of environmental changes in the study areas. This information, compared with field observations, shows that remotely sensed data is useful and efficient for geospatial planning and development of new coast protection scheme.


Author(s):  
Sassi Mohamed Taher

This document is meant to demonstrate the potential uses of remote sensing in managing water resources for irrigated agriculture and to create awareness among potential users. Researchers in various international programs have studied the potential use of remotely sensed data to obtain accurate information on land surface processes and conditions. These studies have demonstrated that quantitative assessment of the soil-vegetation-atmosphere transfer processes can lead to a better understanding of the relationships between crop growth and water management. Remote sensing and GIS was used to map the agriculture area and for detect the change. This was very useful for mapping availability and need of water resources but the problem was concentrating in data collection and analysis because this kind of information and expertise are not available in all country in the world mainly in the developing and under developed country or third world country. However, even though considerable progress has been made over the past 20 years in research applications, remotely sensed data remain underutilized by practicing water resource managers. This paper seeks to bridge the gap between researchers and practitioners first, by illustrating where research tools and techniques have practical applications and, second, by identifying real problems that remote sensing could solve. An important challenge in the field of water resources is to utilize the timely, objective and accurate information provided by remote sensing.


Author(s):  
P. Wicaksono ◽  
P. Danoedoro ◽  
U. Nehren ◽  
A. Maishella ◽  
M. Hafizt ◽  
...  

Abstract. Remote sensing can make seagrass aboveground carbon stock (AGCseagrass) information spatially extensive and widely available. Therefore, it is necessary to develop a rapid approach to estimate AGCseagrass in the field to train and assess its remote sensing-based mapping. The aim of this research is to (1) analyze the Percent Cover (PCv)-AGCseagrass relationship in seagrass at the species and community levels to estimate AGCseagrass from PCv and (2) perform AGCseagrass mapping at both levels using WorldView-2 image and assess the accuracy of the resulting map. This research was conducted in Karimunjawa and Kemujan Islands, Indonesia. Support Vector Machine (SVM) classification was used to map seagrass species composition, and stepwise regression was used to model AGCseagrass using deglint, water column corrected, and principle component bands. The results were a rapid AGCseagrass estimation using an easily measured parameter, the seagrass PCv. At the community level, the AGCseagrass map had 58.79% accuracy (SEE = 5.41 g C m−2), whereas at the species level, the accuracy increased for the class Ea (64.73%, SEE = 6.86 g C m−2) and EaThCr (70.02%, SEE = 4.32 g C m−2) but decreased for ThCr (55.08%, SEE = 2.55 g C m−2). The results indicate that WorldView-2 image reflectance can accurately map AGCseagrass in the study area in the range of 15–20 g C m−2 for Ea, 10–15 g C m−2 for EaThCr, and 4–8 g C m−2 for ThCr. Based on our model, the AGCseagrass in the study area was estimated at 13.39 t C.


2020 ◽  
Vol 12 (8) ◽  
pp. 1320 ◽  
Author(s):  
Laura Chasmer ◽  
Danielle Cobbaert ◽  
Craig Mahoney ◽  
Koreen Millard ◽  
Daniel Peters ◽  
...  

Wetlands have and continue to undergo rapid environmental and anthropogenic modification and change to their extent, condition, and therefore, ecosystem services. In this first part of a two-part review, we provide decision-makers with an overview on the use of remote sensing technologies for the ‘wise use of wetlands’, following Ramsar Convention protocols. The objectives of this review are to provide: (1) a synthesis of the history of remote sensing of wetlands, (2) a feasibility study to quantify the accuracy of remotely sensed data products when compared with field data based on 286 comparisons found in the literature from 209 articles, (3) recommendations for best approaches based on case studies, and (4) a decision tree to assist users and policymakers at numerous governmental levels and industrial agencies to identify optimal remote sensing approaches based on needs, feasibility, and cost. We argue that in order for remote sensing approaches to be adopted by wetland scientists, land-use managers, and policymakers, there is a need for greater understanding of the use of remote sensing for wetland inventory, condition, and underlying processes at scales relevant for management and policy decisions. The literature review focuses on boreal wetlands primarily from a Canadian perspective, but the results are broadly applicable to policymakers and wetland scientists globally, providing knowledge on how to best incorporate remotely sensed data into their monitoring and measurement procedures. This is the first review quantifying the accuracy and feasibility of remotely sensed data and data combinations needed for monitoring and assessment. These include, baseline classification for wetland inventory, monitoring through time, and prediction of ecosystem processes from individual wetlands to a national scale.


Author(s):  
Ram L. Ray ◽  
Maurizio Lazzari ◽  
Tolulope Olutimehin

Landslide is one of the costliest and fatal geological hazards, threatening and influencing the socioeconomic conditions in many countries globally. Remote sensing approaches are widely used in landslide studies. Landslide threats can also be investigated through slope stability model, susceptibility mapping, hazard assessment, risk analysis, and other methods. Although it is possible to conduct landslide studies using in-situ observation, it is time-consuming, expensive, and sometimes challenging to collect data at inaccessible terrains. Remote sensing data can be used in landslide monitoring, mapping, hazard prediction and assessment, and other investigations. The primary goal of this chapter is to review the existing remote sensing approaches and techniques used to study landslides and explore the possibilities of potential remote sensing tools that can effectively be used in landslide studies in the future. This chapter also provides critical and comprehensive reviews of landslide studies focus¬ing on the role played by remote sensing data and approaches in landslide hazard assessment. Further, the reviews discuss the application of remotely sensed products for landslide detection, mapping, prediction, and evaluation around the world. This systematic review may contribute to better understanding the extensive use of remotely sensed data and spatial analysis techniques to conduct landslide studies at a range of scales.


2020 ◽  
Vol 12 (24) ◽  
pp. 4139
Author(s):  
Ruirui Wang ◽  
Wei Shi ◽  
Pinliang Dong

The nighttime light (NTL) on the surface of Earth is an important indicator for the human transformation of the world. NTL remotely sensed data have been widely used in urban development, population estimation, economic activity, resource development and other fields. With the increasing use of artificial lighting technology in agriculture, it has become possible to use NTL remote sensing data for monitoring agricultural activities. In this study, National Polar Partnership (NPP)-Visible Infrared Imaging Radiometer Suite (VIIRS) NTL remote sensing data were used to observe the seasonal variation of artificial lighting in dragon fruit cropland in Binh Thuan Province, Vietnam. Compared with the statistics of planted area, area having products and production of dragon fruit by district in the Statistical Yearbook of Binh Thuan Province 2018, values of the mean and standard deviation of NTL brightness have significant positive correlations with the statistical data. The results suggest that the NTL remotely sensed data could be used to reveal some agricultural productive activities such as dragon fruits production accurately by monitoring the seasonal artificial lighting. This research demonstrates the application potential of NTL remotely sensed data in agriculture.


2018 ◽  
Vol 162 ◽  
pp. 03016
Author(s):  
Alaa Dawood ◽  
Yousif Kalaf ◽  
Nagham Abdulateef ◽  
Mohammed Falih

Water level and distribution is very essential in almost all life aspects. Natural and artificial lakes represent a large percentage of these water bodies in Iraq. In this research the changes in water levels are observed by calculating the areas of five different lakes in five different regions and two different marshes in two different regions of the country, in a period of 12 years (2001 - 2012), archived remotely sensed images were used to determine surface areas around lakes and marshes in Iraq for the chosen years . Level of the lakes corresponding to satellite determined surface areas were retrieved from remotely sensed data .These data were collected to give explanations on lake level and surface area fluctuations. It is important to determine these areas at different water levels to know areas which are being flooded in addition to the total area inundated .The behavior of hydrological regime of these lakes during the period was assessed using an integration of remote sensing and GIS techniques which found that the total surface area of the lakes had diminished and their water volumes reduced. The study further revealed that the levels of the lakes surfaces had lowered through these years.


2020 ◽  
Vol 12 (11) ◽  
pp. 1891 ◽  
Author(s):  
Ronald E. McRoberts ◽  
Erik Næsset ◽  
Christophe Sannier ◽  
Stephen V. Stehman ◽  
Erkki O. Tomppo

For tropical countries that do not have extensive ground sampling programs such as national forest inventories, the gain-loss approach for greenhouse gas inventories is often used. With the gain-loss approach, emissions and removals are estimated as the product of activity data defined as the areas of human-caused emissions and removals and emissions factors defined as the per unit area responses of carbon stocks for those activities. Remotely sensed imagery and remote sensing-based land use and land use change maps have emerged as crucial information sources for facilitating the statistically rigorous estimation of activity data. Similarly, remote sensing-based biomass maps have been used as sources of auxiliary data for enhancing estimates of emissions and removals factors and as sources of biomass data for remote and inaccessible regions. The current status of statistically rigorous methods for combining ground and remotely sensed data that comply with the good practice guidelines for greenhouse gas inventories of the Intergovernmental Panel on Climate Change is reviewed.


Sign in / Sign up

Export Citation Format

Share Document