scholarly journals A Temporal Directed Graph Convolution Network for Traffic Forecasting Using Taxi Trajectory Data

2021 ◽  
Vol 10 (9) ◽  
pp. 624
Author(s):  
Kaiqi Chen ◽  
Min Deng ◽  
Yan Shi

Traffic forecasting plays a vital role in intelligent transportation systems and is of great significance for traffic management. The main issue of traffic forecasting is how to model spatial and temporal dependence. Current state-of-the-art methods tend to apply deep learning models; these methods are unexplainable and ignore the a priori characteristics of traffic flow. To address these issues, a temporal directed graph convolution network (T-DGCN) is proposed. A directed graph is first constructed to model the movement characteristics of vehicles, and based on this, a directed graph convolution operator is used to capture spatial dependence. For temporal dependence, we couple a keyframe sequence and transformer to learn the tendencies and periodicities of traffic flow. Using a real-world dataset, we confirm the superior performance of the T-DGCN through comparative experiments. Moreover, a detailed discussion is presented to provide the path of reasoning from the data to the model design to the conclusions.

Author(s):  
Brian L. Smith ◽  
Michael J. Demetsky

Freeway traffic flow forecasting will play an important role in intelligent transportation systems. The TRB Committee on Freeway Operations has included freeway flow forecasting in its 1995 research program. Much of the past research in traffic flow forecasting has addressed short-term, single-interval predictions. Such limited forecasting models will not support the development of the longer-term operational strategies needed for such events as hazardous material incidents. A multiple-interval freeway traffic flow forecasting model has been developed that predicts traffic volumes in 15-min intervals for several hours into the future. The nonparametric regression modeling technique was chosen for the multiple-interval freeway traffic flow forecasting problem. The technique possesses a number of attractive qualities for traffic forecasting. It is intuitive and uses a data base of past conditions to generate forecasts. It can also be implemented as a generic algorithm and is easily calibrated at field locations, suiting it for wide-scale deployment. The model was applied at two sites on the Capital Beltway monitored by the Northern Virginia Traffic Management System. The nonparametric regression forecasting model produced accurate short- and long-term volume estimates at both sites.


2011 ◽  
Vol 84-85 ◽  
pp. 405-409
Author(s):  
Wei He ◽  
Jie Xiong

Potential knowledge useful for traffic management optimization is hidden in a huge amount of data. Previous works use the prior data pattern labels to train the artificial neural network to attain the intelligent data mining models. The performance of the models suffers from the experts’ experience. To relieve the impact of the human factor, a new hybrid intelligent data mining model is proposed in this work based on self-organizing map (SOM) and support vector machine (SVM). The SOM was firstly used to capture the clustering information of the database through an unsupervised manner. Then the identified samples were treated as input to train the SVM. To optimize the SVM model, the particle swarm optimization (PSO) algorithm was employed to tune the SVM parameters and hence the satisfactory SVM data mining model was obtained. 2000 practical data sets from the Intelligent Transportation Systems (ITS) were applied to the validation of the proposed mining model. The analysis results show that the proposed method can extract the underlying rules of the testing data and can predict the future traffic state with the accuracy beyond 97%. Hence, the new SOM-PSO-SVM data mining model can provide practical application for the ITS.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Ya Zhang ◽  
Mingming Lu ◽  
Haifeng Li

Traffic forecasting is an important prerequisite for the application of intelligent transportation systems in urban traffic networks. The existing works adopted RNN and CNN/GCN, among which GCRN is the state-of-the-art work, to characterize the temporal and spatial correlation of traffic flows. However, it is hard to apply GCRN to the large-scale road networks due to high computational complexity. To address this problem, we propose abstracting the road network into a geometric graph and building a Fast Graph Convolution Recurrent Neural Network (FastGCRNN) to model the spatial-temporal dependencies of traffic flow. Specifically, we use FastGCN unit to efficiently capture the topological relationship between the roads and the surrounding roads in the graph with reducing the computational complexity through importance sampling, combine GRU unit to capture the temporal dependency of traffic flow, and embed the spatiotemporal features into Seq2Seq based on the Encoder-Decoder framework. Experiments on large-scale traffic data sets illustrate that the proposed method can greatly reduce computational complexity and memory consumption while maintaining relatively high accuracy.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Yiming Xing ◽  
Xiaojuan Ban ◽  
Chong Guo

Real-time and accurate prediction of traffic flow is the key to intelligent transportation systems (ITS). However, due to the nonstationarity of traffic flow data, traditional point forecasting can hardly be accurate, so probabilistic forecasting methods are essential for quantification of the potential risks and uncertainties for traffic management. A probabilistic forecasting model of traffic flow based on a multikernel extreme learning machine (MKELM) is proposed. Moreover, the optimal output weights of MKELM are obtained by utilizing Quantum-behaved particle swarm optimization (QPSO) algorithm. To verify its effectiveness, traffic flow probabilistic prediction using QPSO-MKELM was compared with other learning methods. Experimental results show that QPSO-MKELM is more effective for practical applications. And it will help traffic managers to make right decisions.


Author(s):  
Needhi U. Gaonkar

Abstract: Traffic analysis plays an important role in a transportation system for traffic management. Traffic analysis system using computer vision project paper proposes the video based data for vehicle detection and counting systems based on the computer vision. In most Transportation Systems cameras are installed in fixed locations. Vehicle detection is the most important requirement in traffic analysis part. Vehicle detection, tracking, classification and counting is very useful for people and government for traffic flow, highway monitoring, traffic planning. Vehicle analysis will supply with information about traffic flow, traffic summit times on road. The motivation of visual object detection is to track the vehicle position and then tracking in successive frames is to detect and connect target vehicles for frames. Recognising vehicles in an ongoing video is useful for traffic analysis. Recognizing what kind of vehicle in an ongoing video is helpful for traffic analysing. this system can classify the vehicle into bicycle, bus, truck, car and motorcycle. In this system I have used a video-based vehicle counting method in a highway traffic video capture using cctv camera. Project presents the analysis of tracking-by-detection approach which includes detection by YOLO(You Only Look Once) and tracking by SORT(simple online and realtime tracking) algorithm. Keywords: Vehicle detection, Vehicle tracking, Vehicle counting, YOLO, SORT, Analysis, Kalman filter, Hungarian algorithm.


2003 ◽  
Vol 1858 (1) ◽  
pp. 148-157 ◽  
Author(s):  
Sherif Ishak

Little information has been successfully extracted from the wealth of data collected by intelligent transportation systems. Such information is needed for the efficiency of operations and management functions of traffic-management centers. A new set of second-order statistical measures derived from texture characterization techniques in the field of digital image analysis is presented. The main objective is to improve the data-analysis tools used in performance-monitoring systems and assessment of level of service. The new measures can extract properties such as smoothness, homogeneity, regularity, and randomness in traffic operations directly from constructed spatiotemporal traffic contour maps. To avoid information redundancy, a correlation matrix was examined for nearly 14,000 15-min speed contour maps generated for a 3.4-mi freeway section over a period of 5 weekdays. The result was a set of three second-order measures: angular second moment, contrast, and entropy. Each measure was analyzed to examine its sensitivity to various traffic conditions, expressed by the overall speed mean of each contour map. The study also presented a tentative approach, similar to the conventional one used in the Highway Capacity Manual, to evaluate the level of service for each contour map. The new set of level-of-service criteria can be applied in real time by using a stand-alone module that was developed in the study. The module can be readily implemented online and allows traffic-management center operators to tune a large set of related parameters.


Author(s):  
V. Naren Thiruvalar ◽  
E. Vimal

The main objective of this project is to connect the vehicles together and avoid accidents by using V2V Communication. The vehicles are to be connected together by means of DSRC algorithm which is used for transceiving alert messages among the connected vehicles, in case of any emergency situation such as accidents. The Vehicle-to-Vehicle (V2V) and Vehicle-to- Infrastructure (V2I) technologies are specific cases of IoT and key enablers for Intelligent Transportation Systems (ITS). V2V and V2I have been widely used to solve different problems associated with transportation in cities, in which the most important is traffic congestion. A high percentage of congestion is usually presented by the inappropriate use of resources in vehicular infrastructure. In addition, the integration of traffic congestion in decision making for vehicular traffic is a challenge due to its high dynamic behaviour. An increase in the infrastructure growth is a possible solution but turns out to be costly in terms of both time and effort. Various applications that target transport efficiency could make use of the vast information collected by vehicles: safety, traffic management, pollution monitoring, tourist information, etc.


Author(s):  
Helen C. Leligou ◽  
Periklis Chatzimisios ◽  
Lambros Sarakis ◽  
Theofanis Orphanoudakis ◽  
Panagiotis Karkazis ◽  
...  

During the last decades Intelligent Transportation Systems (ITS) have been attracting the interest of an increasing number of researchers, engineers and entrepreneurs, as well as citizens and civil authorities, since they can contribute towards improving road transport safety and efficiency and ameliorate environmental conditions and life quality. Emerging technologies yield miniaturized sensing, processing and communication devices that enable a high degree of integration and open the way for a large number of smart applications that can exploit automated fusion of information and enable efficient decisions by collecting, processing and communicating a large number of data in real-time. The cornerstone of these applications is the realization of an opportunistic wireless communication system between vehicles as well as between vehicles and infrastructure over which the right piece of information reaches the right location on time. In this paper, the authors present the design and implementation of representative safety and traffic management applications. Specifically the authors discuss the hardware and software requirements presenting a use case based on the NEC Linkbird-MX platform, which supports IEEE 802.11p based communications. The authors show how the functionality of IEEE 802.11p can be exploited to build efficient road safety and traffic management applications over mobile opportunistic systems and discuss practical implementation issues.


Sign in / Sign up

Export Citation Format

Share Document