scholarly journals Towards Modelling Future Trends of Quebec’s Boreal Birds’ Species Distribution under Climate Change

2018 ◽  
Vol 7 (9) ◽  
pp. 335
Author(s):  
Jonathan Gaudreau ◽  
Liliana Perez ◽  
Saeed Harati

Adaptation to climate change requires prediction of its impacts, especially on ecosystems. In this work we simulated the change in bird species richness in the boreal forest of Quebec, Canada, under climate change scenarios. To do so, we first analyzed which geographical and bioclimatic variables were the strongest predictors for the spatial distribution of the current resident bird species. Based on canonical redundancy analysis and analysis of variance, we found that annual temperature range, average temperature of the cold season, seasonality of precipitation, precipitation in the wettest season, elevation, and local percentage of wet area had the strongest influence on the species’ distributions. We used these variables with Random Forests, Multivariate Adaptive Regression Splines and Maximum Entropy models to explain spatial variations in species abundance. Future species distributions were calculated by replacing present climatic variables with projections under different climate change pathways. Subsequently, maps of species richness change were produced. The results showed a northward expansion of areas of highest species richness towards the center of the province. Species are also likely to appear near James Bay and Ungava Bay, where rapid climate change is expected.

2010 ◽  
Vol 365 (1549) ◽  
pp. 2035-2045 ◽  
Author(s):  
W. D. Kissling ◽  
R. Field ◽  
H. Korntheuer ◽  
U. Heyder ◽  
K. Böhning-Gaese

Current methods of assessing climate-induced shifts of species distributions rarely account for species interactions and usually ignore potential differences in response times of interacting taxa to climate change. Here, we used species-richness data from 1005 breeding bird and 1417 woody plant species in Kenya and employed model-averaged coefficients from regression models and median climatic forecasts assembled across 15 climate-change scenarios to predict bird species richness under climate change. Forecasts assuming an instantaneous response of woody plants and birds to climate change suggested increases in future bird species richness across most of Kenya whereas forecasts assuming strongly lagged woody plant responses to climate change indicated a reversed trend, i.e. reduced bird species richness. Uncertainties in predictions of future bird species richness were geographically structured, mainly owing to uncertainties in projected precipitation changes. We conclude that assessments of future species responses to climate change are very sensitive to current uncertainties in regional climate-change projections, and to the inclusion or not of time-lagged interacting taxa. We expect even stronger effects for more specialized plant–animal associations. Given the slow response time of woody plant distributions to climate change, current estimates of future biodiversity of many animal taxa may be both biased and too optimistic.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 689
Author(s):  
Yuksel Kaya

Climate change scenarios reveal that Turkey’s wheat production area is under the combined effects of heat and drought stresses. The adverse effects of climate change have just begun to be experienced in Turkey’s spring and the winter wheat zones. However, climate change is likely to affect the winter wheat zone more severely. Fortunately, there is a fast, repeatable, reliable and relatively affordable way to predict climate change effects on winter wheat (e.g., testing winter wheat in the spring wheat zone). For this purpose, 36 wheat genotypes in total, consisting of 14 spring and 22 winter types, were tested under the field conditions of the Southeastern Anatolia Region, a representative of the spring wheat zone of Turkey, during the two cropping seasons (2017–2018 and 2019–2020). Simultaneous heat (>30 °C) and drought (<40 mm) stresses occurring in May and June during both growing seasons caused drastic losses in winter wheat grain yield and its components. Declines in plant characteristics of winter wheat genotypes, compared to those of spring wheat genotypes using as a control treatment, were determined as follows: 46.3% in grain yield, 23.7% in harvest index, 30.5% in grains per spike and 19.4% in thousand kernel weight, whereas an increase of 282.2% in spike sterility occurred. On the other hand, no substantial changes were observed in plant height (10 cm longer than that of spring wheat) and on days to heading (25 days more than that of spring wheat) of winter wheat genotypes. In general, taller winter wheat genotypes tended to lodge. Meanwhile, it became impossible to avoid the combined effects of heat and drought stresses during anthesis and grain filling periods because the time to heading of winter wheat genotypes could not be shortened significantly. In conclusion, our research findings showed that many winter wheat genotypes would not successfully adapt to climate change. It was determined that specific plant characteristics such as vernalization requirement, photoperiod sensitivity, long phenological duration (lack of earliness per se) and vulnerability to diseases prevailing in the spring wheat zone, made winter wheat difficult to adapt to climate change. The most important strategic step that can be taken to overcome these challenges is that Turkey’s wheat breeding program objectives should be harmonized with the climate change scenarios.


2016 ◽  
Vol 64 (3) ◽  
Author(s):  
David A. Moo-Llanes

The leishmaniasis is a complex disease system, caused by the protozoan parasite Leishmania and transmitted to humans by the vector Lutzomyia spp. Since it is listed as a neglected disease according to the World Health Organization, the aim of this study was to determine the current and future niche of cutaneous and visceral leishmaniasis in the Neotropical region. We built the ecological niche model (ENM) of cutaneous (N= 2 910 occurrences) and visceral (N= 851 occurrences) leishmaniasis using MaxEnt algorithm. Nine bioclimatic variables (BIO1, BIO4, BIO5, BIO6, BIO7, BIO12, BIO13, BIO14, BIO15 (downloaded from the Worldclim) and disease occurrences data were used for the construction of ENM for three periods (current, 2050 and 2070) and four climate change scenarios (RCP 2.6, 4.5, 6.0 y 8.5). We analyzed the number of pixels occupied, identity niche, modified niche (stable, loss, and gain) and seasonality. Our analyses indicated the expansion for cutaneous leishmaniasis (CL), a comparison for visceral leishmaniasis (VL). We rejected the null hypothesis of niche identity between CL and VL with Hellinger’s index = 0.91 (0.92-0.98) and Schoener’s Index = 0.67 (0.85-1.00) but with an overlap niche of 56.3 %. The differences between the two leishmaniasis types were detected in relation to RCP scenarios and niche shifts (area gained / loss). Seasonality was more important for CL. We provided a current picture of CL and VL distributions and the predicted distributional changes associated to different climate change scenarios for the Neotropical region. We can anticipate that increasing range is likely although it will depend locally on the future trends in weather seasonality.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Peter Capainolo ◽  
Utku Perktaş ◽  
Mark D. E. Fellowes

Abstract Background Climate change due to anthropogenic global warming is the most important factor that will affect future range distribution of species and will shape future biogeographic patterns. While much effort has been expended in understanding how climate change will affect rare and declining species we have less of an understanding of the likely consequences for some abundant species. The Common Grackle (Quiscalus quiscula; Linnaeus 1758), though declining in portions of its range, is a widespread blackbird (Icteridae) species in North America east of the Rocky Mountains. This study examined how climate change might affect the future range distribution of Common Grackles. Methods We used the R package Wallace and six general climate models (ACCESS1-0, BCC-CSM1-1, CESM1-CAM5-1-FV2, CNRM-CM5, MIROC-ESM, and MPI-ESM-LR) available for the future (2070) to identify climatically suitable areas, with an ecological niche modelling approach that includes the use of environmental conditions. Results Future projections suggested a significant expansion from the current range into northern parts of North America and Alaska, even under more optimistic climate change scenarios. Additionally, there is evidence of possible future colonization of islands in the Caribbean as well as coastal regions in eastern Central America. The most important bioclimatic variables for model predictions were Annual Mean Temperature, Temperature Seasonality, Mean Temperature of Wettest Quarter and Annual Precipitation. Conclusions The results suggest that the Common Grackle could continue to expand its range in North America over the next 50 years. This research is important in helping us understand how climate change will affect future range patterns of widespread, common bird species.


Forests ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 689
Author(s):  
Gisel Garza ◽  
Armida Rivera ◽  
Crystian Sadiel Venegas Barrera ◽  
José Guadalupe Martinez-Ávalos ◽  
Jon Dale ◽  
...  

Walker’s Manihot, Manihot walkerae, is an endangered plant that is endemic to the Tamaulipan thornscrub ecoregion of extreme southern Texas and northeastern Mexico. M. walkerae populations are highly fragmented and are found on both protected public lands and private property. Habitat loss and competition by invasive species are the most detrimental threats for M. walkerae; however, the effect of climate change on M. walkerae’s geographic distribution remains unexplored and could result in further range restrictions. Our objectives are to evaluate the potential effects of climate change on the distribution of M. walkerae and assess the usefulness of natural protected areas in future conservation. We predict current and future geographic distribution for M. walkerae (years 2050 and 2070) using three different general circulation models (CM3, CMIP5, and HADGEM) and two climate change scenarios (RCP 4.5 and 8.5). A total of nineteen spatially rarefied occurrences for M. walkerae and ten non-highly correlated bioclimatic variables were inputted to the maximum entropy algorithm (MaxEnt) to produce twenty replicates per scenario. The area under the curve (AUC) value for the consensus model was higher than 0.90 and the partial ROC value was higher than 1.80, indicating a high predictive ability. The potential reduction in geographic distribution for M. walkerae by the effect of climate change was variable throughout the models, but collectively they predict a restriction in distribution. The most severe reductions were 9% for the year 2050 with the CM3 model at an 8.5 RCP, and 14% for the year 2070 with the CMIP5 model at the 4.5 RCP. The future geographic distribution of M. walkerae was overlapped with protected lands in the U.S. and Mexico in order to identify areas that could be suitable for future conservation efforts. In the U.S. there are several protected areas that are potentially suitable for M. walkerae, whereas in Mexico no protected areas exist within M. walkerae suitable habitat.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Prakhar Rawal ◽  
Swati Kittur ◽  
Murali Krishna Chatakonda ◽  
K S Gopi Sundar

Abstract Urbanisation can limit species persistence and bias composition of functional guilds with serious consequences for ecosystem functioning and conservation planning. Standardised biodiversity surveys are missing at most tropical urban cities where biodiversity levels are high alongside rapidly increasing rates of urbanisation. We explored the utility of time-bound surveys to document winter birds at ponds (wetlands ≤ 5 ha) in Delhi, India at two different times of the day (morning and evening) and in areas with varying extents of wetlands. Systematic surveys at 39 ponds during January–March 2020 yielded an estimated 173 ± 22 bird species (∼37% of Delhi’s birds). The total bird species assemblage at ponds did not vary significantly with time of day, but β-diversity increased marginally with increasing extent of wetlands. Total bird abundance and species richness varied substantially with time of day, with differences apparent across several species rich functional feeding and habitat guilds. Abundance and species richness of some guilds, including species-poor guilds, varied in ponds located in areas with differing extent of wetlands. Reliable and comparable measures of species abundance and species richness (both total and across functional guilds)— metrics commonly used to set research and conservation priorities—in urban habitats can be obtained after appropriately standardising field effort. Such standardised efforts can help underscore the importance of maintaining and improving erstwhile-ignored habitats such as unprotected ponds that are providing refugia to hundreds of bird species in mega-cities like Delhi.


2020 ◽  
Vol 21 (10) ◽  
Author(s):  
AHMAD DWI SETYAWAN ◽  
JATNA SUPRIATNA ◽  
NISYAWATI NISYAWATI ◽  
ILYAS NURSAMSI ◽  
SUTARNO SUTARNO ◽  
...  

Abstract. Setyawan AD, Supriatna J, Nisyawati, Nursamsi I, Sutarno, Sugiyarto, Sunarto, Pradan P, Budiharta S, Pitoyo A, Suhardono S, Setyono P, Indrawan M. 2020. Predicting potential impacts of climate change on the geographical distribution of mountainous selaginellas in Java, Indonesia. Biodiversitas 21: 4866-4877. Selaginella is a genus of non-flowering plant that requires water as a medium for fertilization, as such, it prefers mountainous areas with high level of humidity. Such unique ecosystem of Selaginella is available in some parts of Java Island, Indonesia, especially in highland areas with altitude of more than 1,000 meters above sea level. However, most mountainous areas in Java are likely to be affected by climate change due to global warming, threatening the habitat and sustainability of Selaginella. This study aimed to investigate the impacts of climate change on the geographical distribution of Selaginella opaca Warb. and Selaginella remotifolia Spring. In doing so, we predicted the suitable habitats of both species using Species Distribution Model (SDM) tool of MaxEnt under present climate conditions and future conditions under four climate change scenarios. Species occurrence data were obtained from fieldworks conducted in 2007-2014 across Java Island (283 points: 144 and 139 points for S. opaca and S. remotifolia, respectively) and combined with secondary data from Global Biodiversity Information Facility (GBIF) (52 points: 35 and 17 points for S. opaca and S. remotifolia, respectively), and this dataset was used to model present geographical distribution using environmental and bioclimatic variables. Then, future distribution was predicted under four climate change scenarios: i.e. RCP (Representative Carbon Pathways) 2.6, RCP 4.5, RCP 6.0, and RCP 8.5 in three different time periods (2030, 2050, and 2080). The results of the models showed that the extent of suitable habitats of S. opaca and S. remotifolia will be reduced between 1.8-11.4% due to changes in climatic condition, and in the areas with high level of habitat suitability, including Mount Sumbing, Mount Sindoro and Mount Dieng (Dieng Plateau), the reduction can reach up to 60%. This study adds another context of evidence to understand the potential impacts of climate change on biodiversity, especially on climate-sensitive species, such as Selaginella, in climate-risk regions like mountainous areas of Java Island.


2020 ◽  
Author(s):  
Zhen Liu ◽  
Luis Sandoval ◽  
Lauren Sherman ◽  
Andrew Wilson

ABSTRACTAnimals endemic to tropical mountains are known to be especially vulnerable to climate change. The Cordillera de Talamanca (Costa Rica and Panama) is a geographically isolated mountain chain and global biodiversity hotspot, home to more than 50 endemic bird species. We used eBird community science observations to predict the distributions of a suite of 48 of these endemic birds in 2006-2015, and in 2070, under four climate change scenarios. Species distributions were predicted using program Maxent, incorporating elevation, satellite derived habitat data, and WorldClim climate variables. Model fit, as assessed by Area under the Receiver Operator Curve (AUC) was very high for most species, ranging from 0.877 to 0.992 (mean of 0.94). We found that most species are predicted to undergo range contractions by 2070, with a mean of 15% under modest climate change (RCP 2.6) up to a mean of 40% under more severe climate change (RCP 8.5). Most of the current ranges of these species are within existing protected areas (average of 59% in 2006-2015), and with prospective range contractions, the importance of these protected areas is forecast to increase. We suggest that these predicted range declines should elevate conservation concerns for this suite of species, and vigilance, in the form of better population monitoring, is urgently needed.


2021 ◽  
Author(s):  
◽  
Jennifer Glynn Vinton

<p>Avian community composition fluctuates across the landscape at different scales of space and time. These fluctuations may be modified at the broader scale of landscape and at the local scale of habitat patch. A species' ecology also influences its occurrence and abundance in the landscape. This thesis investigates the spatial and temporal distribution of the avian community in Wellington. Wellington is an interesting case study because it has a diverse range of landscapes influenced by the proximity of hills to the coast (see Appendix 3). I assess the effect of landscape classification on the richness and abundance of birds and the role of fine patch structure in shaping this distribution. My study was located within a 5-km radius of Wellington City's central business district (41 degrees 16' S, 174 degrees 46' E). I used six strip-transects divided into 400m length segments that traversed through high to lower density residential suburbs and green space inter-digitated with built habitat, and established five-minute count (FMBC) points at each segment interval along these routes for a total of 49 points. I used ArcGIS to analyse the habitat patch types in the 100-m areas surrounding the FMBC. I recorded avian species type and abundance along the strips and at the FMBC during the morning and evening. A total of 35 bird species and 10966 individuals were recorded along the strip-transects and 34 bird species and 5960 individuals at the FMBCs. House sparrow, then starling and blackbacked gull, rock pigeon, blackbird and silvereye were the most common and widely spread species. Results indicated that landscape type modified avian biodiversity with the highest number of species (S) recorded in green landscapes (n = 10, S = 15.9) and the lowest in wharf littoral (n = 2, S = 7.5) and low-density commercial sites (n = 3, S = 6.67). The diversity of the landscape within an area did not influence avian biodiversity. I found that total species abundance did not change across the landscape but that the species' ecology did influence where it occurred and its abundance in the landscape. Dietary diversity particularly influenced a species' abundance. Both season and time of day altered species richness and abundance, with lower values of richness recorded in autumn (morning period = 13.5, evening period = 10.7). I found that avian communities in the Wellington urban area were dominated by six common species but that many more species were present in much lower numbers at fewer sites. Results showed an inverse relationship between species richness and abundance - while the greater biomass (abundance) of birds concentrated at FMBC within the built commercial centre and surrounding higher density housing areas, richness increased with distance from the built centre to residential and green sites. I found no relationship between species richness and the total number of individuals present at any point, and the total biomass and abundance of birds was also independent of patch size. Neither habitat patch diversity nor average patch size influenced species diversity across the community of birds, but the effect of average patch size was less at patches between 300 and 1500 metres. The abundance of some individuals in their favoured patch type did vary in response to patch structure with the strongest relationships seen for blackbird and house sparrow. These results suggest that birds are responding to cues at the larger scale of landscape first rather than to fine patch structure within the urban setting, and therefore that landscape is a more important influence in driving bird biodiversity.</p>


Sign in / Sign up

Export Citation Format

Share Document