scholarly journals Large-Scale Station-Level Crowd Flow Forecast with ST-Unet

2019 ◽  
Vol 8 (3) ◽  
pp. 140 ◽  
Author(s):  
Yirong Zhou ◽  
Hao Chen ◽  
Jun Li ◽  
Ye Wu ◽  
Jiangjiang Wu ◽  
...  

High crowd mobility is a characteristic of transportation hubs such as metro/bus/bike stations in cities worldwide. Forecasting the crowd flow for such places, known as station-level crowd flow forecast (SLCFF) in this paper, would have many benefits, for example traffic management and public safety. Concretely, SLCFF predicts the number of people that will arrive at or depart from stations in a given period. However, one challenge is that the crowd flows across hundreds of stations irregularly scattered throughout a city are affected by complicated spatio-temporal events. Additionally, some external factors such as weather conditions or holidays may change the crowd flow tremendously. In this paper, a spatio-temporal U-shape network model (ST-Unet) for SLCFF is proposed. It is a neural network-based multi-output regression model, handling hundreds of target variables, i.e., all stations’ in and out flows. ST-Unet emphasizes stations’ spatial dependence by integrating the crowd flow information from neighboring stations and the cluster it belongs to after hierarchical clustering. It learns the temporal dependence by modeling the temporal closeness, period, and trend of crowd flows. With proper modifications on the network structure, ST-Unet is easily trained and has reliable convergency. Experiments on four real-world datasets were carried out to verify the proposed method’s performance and the results show that ST-Unet outperforms seven baselines in terms of SLCFF.

Author(s):  
Dongbo Xi ◽  
Fuzhen Zhuang ◽  
Yanchi Liu ◽  
Jingjing Gu ◽  
Hui Xiong ◽  
...  

Human mobility data accumulated from Point-of-Interest (POI) check-ins provides great opportunity for user behavior understanding. However, data quality issues (e.g., geolocation information missing, unreal check-ins, data sparsity) in real-life mobility data limit the effectiveness of existing POIoriented studies, e.g., POI recommendation and location prediction, when applied to real applications. To this end, in this paper, we develop a model, named Bi-STDDP, which can integrate bi-directional spatio-temporal dependence and users’ dynamic preferences, to identify the missing POI check-in where a user has visited at a specific time. Specifically, we first utilize bi-directional global spatial and local temporal information of POIs to capture the complex dependence relationships. Then, target temporal pattern in combination with user and POI information are fed into a multi-layer network to capture users’ dynamic preferences. Moreover, the dynamic preferences are transformed into the same space as the dependence relationships to form the final model. Finally, the proposed model is evaluated on three large-scale real-world datasets and the results demonstrate significant improvements of our model compared with state-of-the-art methods. Also, it is worth noting that the proposed model can be naturally extended to address POI recommendation and location prediction tasks with competitive performances.


2018 ◽  
Vol 27 (4) ◽  
pp. 241 ◽  
Author(s):  
M. M. Valero ◽  
O. Rios ◽  
E. Pastor ◽  
E. Planas

A variety of remote sensing techniques have been applied to forest fires. However, there is at present no system capable of monitoring an active fire precisely in a totally automated manner. Spaceborne sensors show too coarse spatio-temporal resolutions and all previous studies that extracted fire properties from infrared aerial imagery incorporated manual tasks within the image processing workflow. As a contribution to this topic, this paper presents an algorithm to automatically locate the fuel burning interface of an active wildfire in georeferenced aerial thermal infrared (TIR) imagery. An unsupervised edge detector, built upon the Canny method, was accompanied by the necessary modules for the extraction of line coordinates and the location of the total burned perimeter. The system was validated in different scenarios ranging from laboratory tests to large-scale experimental burns performed under extreme weather conditions. Output accuracy was computed through three common similarity indices and proved acceptable. Computing times were below 1 s per image on average. The produced information was used to measure the temporal evolution of the fire perimeter and automatically generate rate of spread (ROS) fields. Information products were easily exported to standard Geographic Information Systems (GIS), such as GoogleEarth and QGIS. Therefore, this work contributes towards the development of an affordable and totally automated system for operational wildfire surveillance.


Author(s):  
Jason Soria ◽  
Ying Chen ◽  
Amanda Stathopoulos

Shared mobility-on-demand services are expanding rapidly in cities around the world. As a prominent example, app-based ridesourcing is becoming an integral part of many urban transportation ecosystems. Despite the centrality, limited public availability of detailed temporal and spatial data on ridesourcing trips has limited research on how new services interact with traditional mobility options and how they affect travel in cities. Improving data-sharing agreements are opening unprecedented opportunities for research in this area. This study examined emerging patterns of mobility using recently released City of Chicago public ridesourcing data. The detailed spatio-temporal ridesourcing data were matched with weather, transit, and taxi data to gain a deeper understanding of ridesourcing’s role in Chicago’s mobility system. The goal was to investigate the systematic variations in patronage of ridehailing. K-prototypes was utilized to detect user segments owing to its ability to accept mixed variable data types. An extension of the K-means algorithm, its output was a classification of the data into several clusters called prototypes. Six ridesourcing prototypes were identified and discussed based on significant differences in relation to adverse weather conditions, competition with alternative modes, location and timing of use, and tendency for ridesplitting. The paper discusses the implications of the identified clusters related to affordability, equity, and competition with transit.


2021 ◽  
Vol 15 (6) ◽  
pp. 1-21
Author(s):  
Tong Xia ◽  
Junjie Lin ◽  
Yong Li ◽  
Jie Feng ◽  
Pan Hui ◽  
...  

Crowd flow prediction is an essential task benefiting a wide range of applications for the transportation system and public safety. However, it is a challenging problem due to the complex spatio-temporal dependence and the complicated impact of urban structure on the crowd flow patterns. In this article, we propose a novel framework, 3- D imensional G raph C onvolution N etwork (3DGCN), to predict citywide crowd flow. We first model it as a dynamic spatio-temporal graph prediction problem, where each node represents a region with time-varying flows, and each edge represents the origin–destination (OD) flow between its corresponding regions. As such, OD flows among regions are treated as a proxy for the spatial interactions among regions. To tackle the complex spatio-temporal dependence, our proposed 3DGCN can model the correlation among graph spatial and temporal neighbors simultaneously. To learn and incorporate urban structures in crowd flow prediction, we design the GCN aggregator to be learned from both crowd flow prediction and region function inference at the same time. Extensive experiments with real-world datasets in two cities demonstrate that our model outperforms state-of-the-art baselines by 9.6%∼19.5% for the next-time-interval prediction.


2021 ◽  
Vol 15 (4) ◽  
pp. 1-20
Author(s):  
Tianzi Zang ◽  
Yanmin Zhu ◽  
Yanan Xu ◽  
Jiadi Yu

Crowd flow prediction is a vital problem for an intelligent transportation system construction in a smart city. It plays a crucial role in traffic management and behavioral analysis, thus it has raised great attention from many researchers. However, predicting crowd flows timely and accurately is a challenging task that is affected by many complex factors such as the dependencies of adjacent regions or recent crowd flows. Existing models mainly focus on capturing such dependencies in spatial or temporal domains and fail to model relations between crowd flows of distant regions. We notice that each region has a relatively fixed daily flow and some regions (even very far away from each other) may share similar flow patterns which show strong correlations among them. In this article, we propose a novel model named Double-Encoder which follows a general encoder–decoder framework for multi-step citywide crowd flow prediction. The model consists of two encoder modules named ST-Encoder and FR-Encoder to model spatial-temporal dependencies and daily flow correlations, respectively. We conduct extensive experiments on two real-world datasets to evaluate the performance of the proposed model and show that our model consistently outperforms state-of-the-art methods.


2021 ◽  
Vol 288 (1951) ◽  
pp. 20210690
Author(s):  
María del Mar Delgado ◽  
Raphaël Arlettaz ◽  
Chiara Bettega ◽  
Mattia Brambilla ◽  
Miguel de Gabriel Hernando ◽  
...  

Many animals make behavioural changes to cope with winter conditions, being gregariousness a common strategy. Several factors have been invoked to explain why gregariousness may evolve during winter, with individuals coming together and separating as they trade off the different costs and benefits of living in groups. These trade-offs may, however, change over space and time as a response to varying environmental conditions. Despite its importance, little is known about the factors triggering gregarious behaviour during winter and its change in response to variation in weather conditions is poorly documented. Here, we aimed at quantifying large-scale patterns in wintering associations over 23 years of the white-winged snowfinch Montifringilla nivalis nivalis . We found that individuals gather in larger groups at sites with harsh wintering conditions. Individuals at colder sites reunite later and separate earlier in the season than at warmer sites. However, the magnitude and phenology of wintering associations are ruled by changes in weather conditions. When the temperature increased or the levels of precipitation decreased, group size substantially decreased, and individuals stayed united in groups for a shorter time. These results shed light on factors driving gregariousness and points to shifting winter climate as an important factor influencing this behaviour.


2018 ◽  
Vol 14 (12) ◽  
pp. 1915-1960 ◽  
Author(s):  
Rudolf Brázdil ◽  
Andrea Kiss ◽  
Jürg Luterbacher ◽  
David J. Nash ◽  
Ladislava Řezníčková

Abstract. The use of documentary evidence to investigate past climatic trends and events has become a recognised approach in recent decades. This contribution presents the state of the art in its application to droughts. The range of documentary evidence is very wide, including general annals, chronicles, memoirs and diaries kept by missionaries, travellers and those specifically interested in the weather; records kept by administrators tasked with keeping accounts and other financial and economic records; legal-administrative evidence; religious sources; letters; songs; newspapers and journals; pictographic evidence; chronograms; epigraphic evidence; early instrumental observations; society commentaries; and compilations and books. These are available from many parts of the world. This variety of documentary information is evaluated with respect to the reconstruction of hydroclimatic conditions (precipitation, drought frequency and drought indices). Documentary-based drought reconstructions are then addressed in terms of long-term spatio-temporal fluctuations, major drought events, relationships with external forcing and large-scale climate drivers, socio-economic impacts and human responses. Documentary-based drought series are also considered from the viewpoint of spatio-temporal variability for certain continents, and their employment together with hydroclimate reconstructions from other proxies (in particular tree rings) is discussed. Finally, conclusions are drawn, and challenges for the future use of documentary evidence in the study of droughts are presented.


2021 ◽  
Vol 10 (3) ◽  
pp. 177
Author(s):  
Haochen Zou ◽  
Keyan Cao ◽  
Chong Jiang

Urban road traffic spatio-temporal characters reflect how citizens move and how goods are transported, which is crucial for trip planning, traffic management, and urban design. Video surveillance camera plays an important role in intelligent transport systems (ITS) for recognizing license plate numbers. This paper proposes a spatio-temporal visualization method to discover urban road vehicle density, city-wide regional vehicle density, and hot routes using license plate number data recorded by video surveillance cameras. To improve the accuracy of the visualization effect, during data analysis and processing, this paper utilized Internet crawler technology and adopted an outlier detection algorithm based on the Dixon detection method. In the design of the visualization map, this paper established an urban road vehicle traffic index to intuitively and quantitatively reveal the traffic operation situation of the area. To verify the feasibility of the method, an experiment in Guiyang on data from road video surveillance camera system was conducted. Multiple urban traffic spatial and temporal characters are recognized concisely and efficiently from three visualization maps. The results show the satisfactory performance of the proposed framework in terms of visual analysis, which will facilitate traffic management and operation.


Science ◽  
2021 ◽  
pp. eabf2946
Author(s):  
Louis du Plessis ◽  
John T. McCrone ◽  
Alexander E. Zarebski ◽  
Verity Hill ◽  
Christopher Ruis ◽  
...  

The UK’s COVID-19 epidemic during early 2020 was one of world’s largest and unusually well represented by virus genomic sampling. Here we reveal the fine-scale genetic lineage structure of this epidemic through analysis of 50,887 SARS-CoV-2 genomes, including 26,181 from the UK sampled throughout the country’s first wave of infection. Using large-scale phylogenetic analyses, combined with epidemiological and travel data, we quantify the size, spatio-temporal origins and persistence of genetically-distinct UK transmission lineages. Rapid fluctuations in virus importation rates resulted in >1000 lineages; those introduced prior to national lockdown tended to be larger and more dispersed. Lineage importation and regional lineage diversity declined after lockdown, while lineage elimination was size-dependent. We discuss the implications of our genetic perspective on transmission dynamics for COVID-19 epidemiology and control.


2002 ◽  
Vol 1804 (1) ◽  
pp. 173-178 ◽  
Author(s):  
Lawrence A. Klein ◽  
Ping Yi ◽  
Hualiang Teng

The Dempster–Shafer theory for data fusion and mining in support of advanced traffic management is introduced and tested. Dempste–Shafer inference is a statistically based classification technique that can be applied to detect traffic events that affect normal traffic operations. It is useful when data or information sources contribute partial information about a scenario, and no single source provides a high probability of identifying the event responsible for the received information. The technique captures and combines whatever information is available from the data sources. Dempster’s rule is applied to determine the most probable event—as that with the largest probability based on the information obtained from all contributing sources. The Dempster–Shafer theory is explained and its implementation described through numerical examples. Field testing of the data fusion technique demonstrated its effectiveness when the probability masses, which quantify the likelihood of the postulated events for the scenario, reflect current traffic and weather conditions.


Sign in / Sign up

Export Citation Format

Share Document