scholarly journals Mapping Landslide Hazard Risk Using Random Forest Algorithm in Guixi, Jiangxi, China

2020 ◽  
Vol 9 (11) ◽  
pp. 695
Author(s):  
Yang Zhang ◽  
Weicheng Wu ◽  
Yaozu Qin ◽  
Ziyu Lin ◽  
Guiliang Zhang ◽  
...  

Landslide hazards affect the security of human life and property. Mapping the spatial distribution of landslide hazard risk is critical for decision-makers to implement disaster prevention measures. This study aimed to predict and zone landslide hazard risk, using Guixi County in eastern Jiangxi, China, as an example. An integrated dataset composed of 21 geo-information layers, including lithology, rainfall, altitude, slope, distances to faults, roads and rivers, and thickness of the weathering crust, was used to achieve the aim. Non-digital layers were digitized and assigned weights based on their landslide propensity. Landslide locations and non-risk zones (flat areas) were both vectorized as polygons and randomly divided into two groups to create a training set (70%) and a validation set (30%). Using this training set, the Random Forests (RF) algorithm, which is known for its accurate prediction, was applied to the integrated dataset for risk modeling. The results were assessed against the validation set. Overall accuracy of 91.23% and Kappa Coefficient of 0.82 were obtained. The calculated probability for each pixel was consequently graded into different zones for risk mapping. Hence, we conclude that landslide risk zoning using the RF algorithm can serve as a pertinent reference for local government in their disaster prevention and early warning measures.

2021 ◽  
Vol 13 (9) ◽  
pp. 4830
Author(s):  
Wenchao Huangfu ◽  
Weicheng Wu ◽  
Xiaoting Zhou ◽  
Ziyu Lin ◽  
Guiliang Zhang ◽  
...  

Reliable prediction of landslide occurrence is important for hazard risk reduction and prevention. Taking Guixi in northeast Jiangxi as an example, this research aimed to conduct such a landslide risk assessment using a multiple logistic regression (MLR) algorithm. Field-investigated landslides and non-landslide sites were converted into polygons. We randomly generated 50,000 sampling points to intersect these polygons and the intersected points were divided into two parts, a training set (TS) and a validation set (VT) in a ratio of 7 to 3. Thirteen geo-environmental factors, including elevation, slope, and distance from roads were employed as hazard-causative factors, which were intersected by the TS to create the random point (RP)-based dataset. The next step was to compute the certainty factor (CF) of each factor to constitute a CF-based dataset. MLR was applied to the two datasets for landslide risk modeling. The probability of landslides was then calculated in each pixel, and risk maps were produced. The overall accuracy of these two models versus VS was 91.5% and 90.4% with a Kappa coefficient of 0.814 and 0.782, respectively. The RP-based MLR modeling achieved more reliable predictions and its risk map seems more plausible for providing technical support for implementing disaster prevention measures in Guixi.


Author(s):  
Xiaoting Zhou ◽  
Weicheng Wu ◽  
Ziyu Lin ◽  
Guiliang Zhang ◽  
Renxiang Chen ◽  
...  

Abstract. Landslides are one of the major geohazards threatening human society. This study was aimed at conducting such a hazard risk prediction and zoning based on an efficient machine learning approach, Random Forest (RF), for Ruijin, Jiangxi, China. Multiple geospatial and geo-environmental data such as land cover, NDVI, landform, rainfall, stratigraphic lithology, proximity to faults, to roads and to rivers, depth of the weathered crust, etc., were utilized in this research. After pre-processing, including digitization, linear feature buffering and value assignment, 19 hazard-causative factors were eventually produced and converted into raster to constitute a 19-band geo-environmental dataset. 155 observed landslides that had truly taken places in the past 10 years were utilized to establish a vector layer. 70 % of the disaster sites (points) were randomly selected to compose a training set (TS) and the remained 30 % to form a validation set (VS). A number of non-risk samples were identified in low slope (


2021 ◽  
Vol 9 ◽  
Author(s):  
Penghui Ou ◽  
Weicheng Wu ◽  
Yaozu Qin ◽  
Xiaoting Zhou ◽  
Wenchao Huangfu ◽  
...  

Landslides constitute a severe environmental problem in Jiangxi, China. This research was aimed at conducting landslide hazard assessment to provide technical support for disaster reduction and prevention action in the province. Fourteen geo-environmental factors, e.g., slope, elevation, road, river, fault, lithology, rainfall, and land cover types, were selected for this study. A test was made in two cases: (1) only based on the main linear features, e.g., main rivers and roads, and (2) with detailed complete linear features including all levels of roads and rivers. After buffering of the linear features, an information value (IV) analysis was applied to quantify the distribution of the observed landslides for each subset of the 14 factors. The results were inputted into the binary logistic regression model (LRM) for landslide risk modeling, taking the known landslide points as a training set (70% of the total 9,525 points). The calculated probability of a landslide was further classified into five grades with an interval of 0.2 for hazard mapping: very high (3.70%), high (4.05%), moderate (18.72%), low (27.17%), and stable zones (46.36%). The accuracy was evaluated by AUC [the area under the receiver operating characteristic (ROC) curve] vs. the validation set (30%, the remaining landslides). The final results show that with increasing the completeness of the linear features, the modeling reliability also significantly increased. We hence concluded that the tested methodology is capable of achieving the landslide hazard prediction at regional scale, and the results may provide technical support for geohazard reduction and prevention in the studied province.


2020 ◽  
Vol 163 (6) ◽  
pp. 1156-1165
Author(s):  
Juan Xiao ◽  
Qiang Xiao ◽  
Wei Cong ◽  
Ting Li ◽  
Shouluan Ding ◽  
...  

Objective To develop an easy-to-use nomogram for discrimination of malignant thyroid nodules and to compare diagnostic efficiency with the Kwak and American College of Radiology (ACR) Thyroid Imaging, Reporting and Data System (TI-RADS). Study Design Retrospective diagnostic study. Setting The Second Hospital of Shandong University. Subjects and Methods From March 2017 to April 2019, 792 patients with 1940 thyroid nodules were included into the training set; from May 2019 to December 2019, 174 patients with 389 nodules were included into the validation set. Multivariable logistic regression model was used to develop a nomogram for discriminating malignant nodules. To compare the diagnostic performance of the nomogram with the Kwak and ACR TI-RADS, the area under the receiver operating characteristic curve, sensitivity, specificity, and positive and negative predictive values were calculated. Results The nomogram consisted of 7 factors: composition, orientation, echogenicity, border, margin, extrathyroidal extension, and calcification. In the training set, for all nodules, the area under the curve (AUC) for the nomogram was 0.844, which was higher than the Kwak TI-RADS (0.826, P = .008) and the ACR TI-RADS (0.810, P < .001). For the 822 nodules >1 cm, the AUC of the nomogram was 0.891, which was higher than the Kwak TI-RADS (0.852, P < .001) and the ACR TI-RADS (0.853, P < .001). In the validation set, the AUC of the nomogram was also higher than the Kwak and ACR TI-RADS ( P < .05), each in the whole series and separately for nodules >1 or ≤1 cm. Conclusions When compared with the Kwak and ACR TI-RADS, the nomogram had a better performance in discriminating malignant thyroid nodules.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 684.1-684
Author(s):  
J. Q. Zhang ◽  
S. X. Zhang ◽  
R. Zhao ◽  
J. Qiao ◽  
M. T. Qiu ◽  
...  

Background:Dermatomyositis (DM) is an idiopathic inflammatory myopathy with heterogeneous clinical manifestation that raise challenges regarding diagnosis and therapy1. Ferroptosis is a newly discovered form of regulated cell death that is the nexus between metabolism, redox biology, and rheumatic immune diseases2. However, how ferroptosis maintains the balance of lymphocyte T cells and affect disease activity in DM is unclear.Objectives:To investigate an ferroptosis-related multiple gene expression signature for classification by assessing the global gene expression profile, and calculate the lymphocyte T cells status in the different subsets.Methods:Gene expression profiles of skeletal muscle from DM samples were acquired from GEO database. GSE143323 (30 patients and 20 HCs) was selected as the training set. The GSE3307 contained 21 DM patients and was selected as the validation set. The 60 ferroptosis genes were obtained from previous literature3. The intersection of the global gene and ferroptosis genes was considered the set of significant G-Ferroptosis genes for further analysis. The “NMF” (R-package) was applied as an unsupervised clustering method for sample classification by using G-Ferroptosis genes expression microarray data from the training datasets. An ferroptosis score model was constructed. The performance of the ferroptosis genes-based risk score model constructed by the DM training set was validated in the batch-1 and batch-2 DM sets. Normalized ferroptosis genes training data was used to compare the ssGSEA scores of gene sets between the high risk and low risk group. The statistical software package R (version 4.0.3) was used for all analyses. P value < 0.05 were considered statistically significant.Results:We selected 54 significant G-Ferroptosis genes for further analysis in training set. There were 2 distinct subtypes (high-ferroptosis-score groups and low-ferroptosis-score groups) identified in G-Ferroptosis genes cohort which were also identified in validation datasets (Fig.1A, C, D). Metallothionein 1G (MT1G) was a characteristic gene of low-ferroptosis-score group. The characteristic genes of high-ferroptosis-score group were acyl-CoA synthetase family member 2(ACSF2) and aconitase 1(ACO1) (Fig.1B). Patients in high-ferroptosis-score group had a lower level of Tregs compared with that of low-ferroptosis-score patients in both training and validation set (P <0.05, Fig.1E).Conclusion:The biological process of ferroptosis is associated with the lever of Tregs, suggesting the process of ferroptosis may be involved in the disease progression of DM. Identificating ferroptosis-related features for DM might provide a new idea for clinical treatment.References:[1]DeWane ME, Waldman R, Lu J. Dermatomyositis: Clinical features and pathogenesis. Journal of the American Academy of Dermatology 2020;82(2):267-81. doi: 10.1016/j.jaad.2019.06.1309 [published Online First: 2019/07/08].[2]Liang C, Zhang X, Yang M, et al. Recent Progress in Ferroptosis Inducers for Cancer Therapy. Advanced materials (Deerfield Beach, Fla) 2019;31(51):e1904197. doi: 10.1002/adma.201904197 [published Online First: 2019/10/09].[3]Liang JY, Wang DS, Lin HC, et al. A Novel Ferroptosis-related Gene Signature for Overall Survival Prediction in Patients with Hepatocellular Carcinoma. International journal of biological sciences 2020;16(13):2430-41. doi: 10.7150/ijbs.45050 [published Online First: 2020/08/08].Acknowledgements:This project was supported by National Science Foundation of China (82001740).Open Fund from the Key Laboratory of Cellular Physiology (Shanxi Medical University) (KLCP2019) and Innovation Plan for Postgraduate Education in Shanxi Province (2020BY078).Disclosure of Interests:None declared


2020 ◽  
Vol 11 (1) ◽  
pp. 8
Author(s):  
Claudia-Gabriela Moldovanu ◽  
Bianca Boca ◽  
Andrei Lebovici ◽  
Attila Tamas-Szora ◽  
Diana Sorina Feier ◽  
...  

Nuclear grade is important for treatment selection and prognosis in patients with clear cell renal cell carcinoma (ccRCC). This study aimed to determine the ability of preoperative four-phase multiphasic multidetector computed tomography (MDCT)-based radiomics features to predict the WHO/ISUP nuclear grade. In all 102 patients with histologically confirmed ccRCC, the training set (n = 62) and validation set (n = 40) were randomly assigned. In both datasets, patients were categorized according to the WHO/ISUP grading system into low-grade ccRCC (grades 1 and 2) and high-grade ccRCC (grades 3 and 4). The feature selection process consisted of three steps, including least absolute shrinkage and selection operator (LASSO) regression analysis, and the radiomics scores were developed using 48 radiomics features (10 in the unenhanced phase, 17 in the corticomedullary (CM) phase, 14 in the nephrographic (NP) phase, and 7 in the excretory phase). The radiomics score (Rad-Score) derived from the CM phase achieved the best predictive ability, with a sensitivity, specificity, and an area under the curve (AUC) of 90.91%, 95.00%, and 0.97 in the training set. In the validation set, the Rad-Score derived from the NP phase achieved the best predictive ability, with a sensitivity, specificity, and an AUC of 72.73%, 85.30%, and 0.84. We constructed a complex model, adding the radiomics score for each of the phases to the clinicoradiological characteristics, and found significantly better performance in the discrimination of the nuclear grades of ccRCCs in all MDCT phases. The highest AUC of 0.99 (95% CI, 0.92–1.00, p < 0.0001) was demonstrated for the CM phase. Our results showed that the MDCT radiomics features may play a role as potential imaging biomarkers to preoperatively predict the WHO/ISUP grade of ccRCCs.


Author(s):  
K. Bhusan ◽  
S. S. Kundu ◽  
K. Goswami ◽  
S. Sudhakar

Slopes are the most common landforms in North Eastern Region (NER) of India and because of its relatively immature topography, active tectonics, and intense rainfall activities; the region is susceptible to landslide incidences. The scenario is further aggravated due to unscientific human activities leading to destabilization of slopes. Guwahati, the capital city of Assam also experiences similar hazardous situation especially during monsoon season thus demanding a systematic study towards landslide risk reduction. A systematic assessment of landslide hazard requires understanding of two components, "where" and "when" that landslides may occur. Presently no such system exists for Guwahati city due to lack of landslide inventory data, high resolution thematic maps, DEM, sparse rain gauge network, etc. The present study elucidates the potential of space-based inputs in addressing the problem in absence of field-based observing networks. First, Landslide susceptibility map in 1 : 10,000 scale was derived by integrating geospatial datasets interpreted from high resolution satellite data. Secondly, the rainfall threshold for dynamic triggering of landslide was estimated using rainfall estimates from Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis. The 3B41RT data for 1 hourly rainfall estimates were used to make Intensity-Duration plot. Critical rainfall was estimated for every incidence by analysing cumulative rainfall leading to a landslide for total of 19 incidences and an empirical rainfall intensity-duration threshold for triggering shallow debris slides was developed (Intensity = 5.9 Duration-0.479).


Sign in / Sign up

Export Citation Format

Share Document