scholarly journals Muscle Conditional Medium Reduces Intramuscular Adipocyte Differentiation and Lipid Accumulation through Regulating Insulin Signaling

2017 ◽  
Vol 18 (8) ◽  
pp. 1799 ◽  
Author(s):  
◽  
◽  
◽  
◽  
◽  
...  
2021 ◽  
Vol 11 (4) ◽  
pp. 1725
Author(s):  
Hee-Do Hong ◽  
Sun-Il Choi ◽  
Ok-Hwan Lee ◽  
Young-Cheul Kim

Although ginsenosides Rb1 and Rg3 have been identified as the significant ginsenosides found in red ginseng that confer anti-diabetic actions, it is unclear whether insulin-sensitizing effects are mediated by the individual compounds or by their combination. To determine the effect of ginsenosides Rb1 and Rg3 on adipocyte differentiation, 3T3-L1 preadipocytes were induced to differentiate the standard hormonal inducers in the absence or presence of ginsenosides Rb1 or Rg3. Additionally, we determined the effects of Rb1, Rg3, or their combination on the expression of genes related to adipocyte differentiation, adipogenic transcription factors, and the insulin signaling pathway in 3T3-L1 cells using semi-quantitative RT-PCR. Rb1 significantly increased the expression of CEBPα, PPARγ, and aP2 mRNAs. However, Rg3 exerted its maximal stimulatory effect on these genes at 1 μM concentration, while a high concentration (50 μM) showed inhibitory effects. Similarly, treatment with Rb1 and Rg3 (1 μM) increased the expression of IRS-1, Akt, PI3K, GLUT4, and adiponectin. Importantly, co-treatment of Rb1 and Rg3 (9:1) induced the maximal expression levels of these mRNAs. Our data indicate that the anti-diabetic activity of red ginseng is, in part, mediated by synergistic actions of Rb1 and Rg3, further supporting the significance of minor Rg3.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Hong-Jie Chen ◽  
Chih-Yuan Ko ◽  
Jian-Hua Xu ◽  
Yu-Chu Huang ◽  
James Swi-Bea Wu ◽  
...  

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease, and most patients with T2DM develop nonalcoholic fatty liver disease (NAFLD). Both diseases are closely linked to insulin resistance (IR). Our previous studies demonstrated that Ruellia tuberosa L. (RTL) extract significantly enhanced glucose uptake in the skeletal muscles and ameliorated hyperglycemia and IR in T2DM rats. We proposed that RTL might be via enhancing hepatic antioxidant capacity. However, the potent RTL bioactivity remains unidentified. In this study, we investigated the effects of RTL on glucose uptake, IR, and lipid accumulation in vitro to mimic the T2DM accompanied by the NAFLD paradigm. FL83B mouse hepatocytes were treated with tumor necrosis factor-α (TNF-α) to induce IR, coincubated with oleic acid (OA) to induce lipid accumulation, and then, treated with RTL fractions, fractionated with n-hexane or ethyl acetate (EA), from column chromatography, and analyzed by thin-layer chromatography. Our results showed that the ethyl acetate fraction (EAf2) from RTL significantly increased glucose uptake and suppressed lipid accumulation in TNF-α plus OA-treated FL83B cells. Western blot analysis showed that EAf2 from RTL ameliorated IR by upregulating the expression of insulin-signaling-related proteins, including protein kinase B, glucose transporter-2, and peroxisome proliferator-activated receptor alpha in TNF-α plus OA-treated FL83B cells. The results of this study suggest that EAf2 from RTL may improve hepatic glucose uptake and alleviate lipid accumulation by ameliorating and suppressing the hepatic insulin signaling and lipogenesis pathways, respectively, in hepatocytes.


2017 ◽  
Vol 485 (2) ◽  
pp. 366-371 ◽  
Author(s):  
Kerstin Rufinatscha ◽  
Bernhard Radlinger ◽  
Jochen Dobner ◽  
Sabrina Folie ◽  
Claudia Bon ◽  
...  

2020 ◽  
Vol 32 (6) ◽  
pp. 407-419 ◽  
Author(s):  
Yurina Miyajima ◽  
Kafi N Ealey ◽  
Yasutaka Motomura ◽  
Miho Mochizuki ◽  
Natsuki Takeno ◽  
...  

Abstract Group 2 innate lymphoid cells (ILC2s) are type 2 cytokine-producing cells that have important roles in helminth infection and allergic inflammation. ILC2s are tissue-resident cells, and their phenotypes and roles are regulated by tissue-specific environmental factors. While the role of ILC2s in the lung, intestine and bone marrow has been elucidated in many studies, their role in adipose tissues is still unclear. Here, we report on the role of ILC2-derived bone morphogenetic protein 7 (BMP7) in adipocyte differentiation and lipid accumulation. Co-culture of fat-derived ILC2s with pluripotent mesenchymal C3H10T1/2 cells and committed white preadipocyte 3T3-L1 cells resulted in their differentiation to adipocytes and induced lipid accumulation. Co-culture experiments using BMP7-deficient ILC2s revealed that BMP7, produced by ILC2s, induces differentiation into brown adipocytes. Our results demonstrate that BMP7, produced by ILC2s, affects adipocyte differentiation, particularly in brown adipocytes.


2019 ◽  
Vol 10 ◽  
Author(s):  
Meng Zhang ◽  
Fang Li ◽  
Jun-wei Sun ◽  
Dong-hua Li ◽  
Wen-ting Li ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Yuka Murata ◽  
Takashi Yamashiro ◽  
Takaomi Kessoku ◽  
Israt Jahan ◽  
Haruki Usuda ◽  
...  

Nonalcoholic fatty liver disease (NAFLD) is characterized by a spectrum of liver pathologies, from simple steatosis to steatohepatitis. Recent studies have increasingly noted the aberrant expression of microRNAs closely related to NAFLD pathologies. We have previously shown the presence of increased levels of microRNA-27b (miR-27b) in patients with NAFLD. In this study, we investigated the role of miR-27b in NAFLD by examining the impact of up-regulated miR-27b on the differentiation of preadipocytes into mature adipocytes. We found that miR-27b-3p remarkably enhances the adipocyte differentiation of 3T3-L1 cells associated with lipid accumulation and intracellular triglyceride contents. Furthermore, we have demonstrated not only that miR-27b-3p induces acyl-CoA thioesterase 2 (ACOT2) expression in 3T3-L1 cells, but also that the knockdown of ACOT2 suppresses lipid accumulation and adipocyte differentiation in both the presence and absence of miR-27b-3p treatment. Our data strongly suggest that the miR-27b-ACOT2 axis is an important pathway in adipocyte differentiation and may play a role in the pathogenesis of NAFLD.


PLoS ONE ◽  
2014 ◽  
Vol 9 (4) ◽  
pp. e95100 ◽  
Author(s):  
Sara Palacios-Ortega ◽  
Maider Varela-Guruceaga ◽  
Fermín Ignacio Milagro ◽  
José Alfredo Martínez ◽  
Carlos de Miguel

Sign in / Sign up

Export Citation Format

Share Document