scholarly journals Peptide-Based Membrane Fusion Inhibitors Targeting HCoV-229E Spike Protein HR1 and HR2 Domains

2018 ◽  
Vol 19 (2) ◽  
pp. 487 ◽  
Author(s):  
Shuai Xia ◽  
Wei Xu ◽  
Qian Wang ◽  
Cong Wang ◽  
Chen Hua ◽  
...  
2009 ◽  
Vol 17 (14) ◽  
pp. 4916-4920 ◽  
Author(s):  
Shinya Oishi ◽  
Yasuyo Kodera ◽  
Hiroki Nishikawa ◽  
Hirotaka Kamitani ◽  
Tsuyoshi Watabe ◽  
...  

2001 ◽  
Vol 75 (6) ◽  
pp. 2792-2802 ◽  
Author(s):  
Dawn K. Krueger ◽  
Sean M. Kelly ◽  
Daniel N. Lewicki ◽  
Rosanna Ruffolo ◽  
Thomas M. Gallagher

ABSTRACT The prototype JHM strain of murine hepatitis virus (MHV) is an enveloped, RNA-containing coronavirus that has been selected in vivo for extreme neurovirulence. This virus encodes spike (S) glycoproteins that are extraordinarily effective mediators of intercellular membrane fusion, unique in their ability to initiate fusion even without prior interaction with the primary MHV receptor, a murine carcinoembryonic antigen-related cell adhesion molecule (CEACAM). In considering the possible role of this hyperactive membrane fusion activity in neurovirulence, we discovered that the growth of JHM in tissue culture selected for variants that had lost murine CEACAM-independent fusion activity. Among the collection of variants, mutations were identified in regions encoding both the receptor-binding (S1) and fusion-inducing (S2) subunits of the spike protein. Each mutation was separately introduced into cDNA encoding the prototype JHM spike, and the set of cDNAs was expressed using vaccinia virus vectors. The variant spikes were similar to that of JHM in their assembly into oligomers, their proteolysis into S1 and S2 cleavage products, their transport to cell surfaces, and their affinity for a soluble form of murine CEACAM. However, these tissue culture-adapted spikes were significantly stabilized as S1-S2 heteromers, and their entirely CEACAM-dependent fusion activity was delayed or reduced relative to prototype JHM spikes. The mutations that we have identified therefore point to regions of the S protein that specifically regulate the membrane fusion reaction. We suggest that cultured cells, unlike certain in vivo environments, select for S proteins with delayed, CEACAM-dependent fusion activities that may increase the likelihood of virus internalization prior to the irreversible uncoating process.


2020 ◽  
Vol 94 (15) ◽  
Author(s):  
Danwei Yu ◽  
Jing Xue ◽  
Huamian Wei ◽  
Zhe Cong ◽  
Ting Chen ◽  
...  

ABSTRACT We recently reported a group of lipopeptide-based membrane fusion inhibitors with potent antiviral activities against human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus (SIV). In this study, the in vivo therapeutic efficacy of such a lipopeptide, LP-52, was evaluated in rhesus macaques chronically infected with pathogenic SIVmac239. In a pilot study with one monkey, monotherapy with low-dose LP-52 rapidly reduced the plasma viral loads to below the limit of detection and maintained viral suppression during three rounds of structurally interrupted treatment. The therapeutic efficacy of LP-52 was further verified in four infected monkeys; however, three out of the monkeys had viral rebounds under the LP-52 therapy. We next focused on characterizing SIV mutants responsible for the in vivo resistance. Sequence analyses revealed that a V562A or V562M mutation in the N-terminal heptad repeat (NHR) and a E657G mutation in the C-terminal heptad repeat (CHR) of SIV gp41 conferred high resistance to LP-52 and cross-resistance to the peptide drug T20 and two newly designed lipopeptides (LP-80 and LP-83). Moreover, we showed that the resistance mutations greatly reduced the stability of diverse fusion inhibitors with the NHR site, and V562A or V562M in combination with E657G could significantly impair the functionality of viral envelopes (Envs) to mediate SIVmac239 infection and decrease the thermostability of viral six-helical bundle (6-HB) core structure. In conclusion, the present data have not only facilitated the development of novel anti-HIV drugs that target the membrane fusion step, but also help our understanding of the mechanism of viral evolution to develop drug resistance. IMPORTANCE The anti-HIV peptide drug T20 (enfuvirtide) is the only membrane fusion inhibitor available for treatment of viral infection; however, it exhibits relatively weak antiviral activity, short half-life, and a low genetic barrier to inducing drug resistance. Design of lipopeptide-based fusion inhibitors with extremely potent and broad antiviral activities against divergent HIV-1, HIV-2, and SIV isolates have provided drug candidates for clinical development. Here, we have verified a high therapeutic efficacy for the lipopeptide LP-52 in SIVmac239-infected rhesus monkeys. The resistance mutations selected in vivo have also been characterized, providing insights into the mechanism of action of newly designed fusion inhibitors with a membrane-anchoring property. For the first time, the data show that HIV-1 and SIV can share a similar genetic pathway to develop resistance, and that a lipopeptide fusion inhibitor could have a same resistance profile as its template peptide.


2019 ◽  
Vol 70 (6) ◽  
pp. 1082-1092 ◽  
Author(s):  
Dominic H. Banda ◽  
Paula M. Perin ◽  
Richard J.P. Brown ◽  
Daniel Todt ◽  
Wladimir Solodenko ◽  
...  

MedChemComm ◽  
2010 ◽  
Vol 1 (4) ◽  
pp. 276 ◽  
Author(s):  
Shinya Oishi ◽  
Kentaro Watanabe ◽  
Saori Ito ◽  
Michinori Tanaka ◽  
Hiroki Nishikawa ◽  
...  

2006 ◽  
Vol 80 (14) ◽  
pp. 6794-6800 ◽  
Author(s):  
Fang Li ◽  
Marcelo Berardi ◽  
Wenhui Li ◽  
Michael Farzan ◽  
Philip R. Dormitzer ◽  
...  

ABSTRACT The severe acute respiratory syndrome coronavirus enters cells through the activities of a spike protein (S) which has receptor-binding (S1) and membrane fusion (S2) regions. We have characterized four sequential states of a purified recombinant S ectodomain (S-e) comprising S1 and the ectodomain of S2. They are S-e monomers, uncleaved S-e trimers, cleaved S-e trimers, and dissociated S1 monomers and S2 trimer rosettes. Lowered pH induces an irreversible transition from flexible, L-shaped S-e monomers to clove-shaped trimers. Protease cleavage of the trimer occurs at the S1-S2 boundary; an ensuing S1 dissociation leads to a major rearrangement of the trimeric S2 and to formation of rosettes likely to represent clusters of elongated, postfusion trimers of S2 associated through their fusion peptides. The states and transitions of S suggest conformational changes that mediate viral entry into cells.


2013 ◽  
Vol 21 (12) ◽  
pp. 3547-3554 ◽  
Author(s):  
Hong-Kui Cui ◽  
Jie Qing ◽  
Ye Guo ◽  
Yu-Jia Wang ◽  
Li-Jia Cui ◽  
...  

1998 ◽  
Vol 140 (1) ◽  
pp. 91-99 ◽  
Author(s):  
Malini Vashishtha ◽  
Thomas Phalen ◽  
Marianne T. Marquardt ◽  
Jae S. Ryu ◽  
Alice C. Ng ◽  
...  

Membrane fusion and budding are key steps in the life cycle of all enveloped viruses. Semliki Forest virus (SFV) is an enveloped alphavirus that requires cellular membrane cholesterol for both membrane fusion and efficient exit of progeny virus from infected cells. We selected an SFV mutant, srf-3, that was strikingly independent of cholesterol for growth. This phenotype was conferred by a single amino acid change in the E1 spike protein subunit, proline 226 to serine, that increased the cholesterol independence of both srf-3 fusion and exit. The srf-3 mutant emphasizes the relationship between the role of cholesterol in membrane fusion and virus exit, and most significantly, identifies a novel spike protein region involved in the virus cholesterol requirement.


Author(s):  
Yuanmei Zhu ◽  
Danwei Yu ◽  
Hongxia Yan ◽  
Huihui Chong ◽  
Yuxian He

AbstractThe coronavirus disease COVID-19, caused by emerging SARS-CoV-2, has posed serious threats to global public health, economic and social stabilities, calling for the prompt development of therapeutics and prophylactics. In this study, we firstly verified that SARS-CoV-2 uses human ACE2 as a cell receptor and its spike (S) protein mediates high membrane fusion activity. Comparing to that of SARS-CoV, the heptad repeat 1 (HR1) sequence in the S2 fusion protein of SARS-CoV-2 possesses markedly increased α-helicity and thermostability, as well as a higher binding affinity with its corresponding heptad repeat 2 (HR1) site. Then, we designed a HR2 sequence-based lipopeptide fusion inhibitor, termed IPB02, which showed highly poent activities in inibibiting the SARS-CoV-2 S protein-mediated cell-cell fusion and pseudovirus infection. IPB02 also inhibited the SARS-CoV pseudovirus efficiently. Moreover, the strcuture and activity relationship (SAR) of IPB02 were characterzized with a panel of truncated lipopeptides, revealing the amino acid motifs critical for its binding and antiviral capacities. Therefore, the presented results have provided important information for understanding the entry pathway of SARS-CoV-2 and the design of antivirals that target the membrane fusion step.


Sign in / Sign up

Export Citation Format

Share Document