scholarly journals Peiminine Protects against Lipopolysaccharide-Induced Mastitis by Inhibiting the AKT/NF-κB, ERK1/2 and p38 Signaling Pathways

2018 ◽  
Vol 19 (9) ◽  
pp. 2637 ◽  
Author(s):  
Qian Gong ◽  
Yanwei Li ◽  
He Ma ◽  
Wenjin Guo ◽  
Xingchi Kan ◽  
...  

Peiminine, an alkaloid extracted from Fritillaria plants, has been reported to have potent anti-inflammatory properties. However, the anti-inflammatory effect of peiminine on a mouse lipopolysaccharide (LPS)-induced mastitis model remains to be elucidated. The purpose of this experiment was to investigate the effect of peiminine on LPS-induced mastitis in mice. LPS was injected through the canals of the mammary gland to generate the mouse LPS-induced mastitis model. Peiminine was administered intraperitoneally 1 h before and 12 h after the LPS injection. In vitro, mouse mammary epithelial cells (mMECs) were pretreated with different concentrations of peiminine for 1 h and were then stimulated with LPS. The mechanism of peiminine on mastitis was studied by hematoxylin-eosin staining (H&E) staining, western blotting, and enzyme-linked immunosorbent assay (ELISA). The results showed that peiminine significantly decreased the histopathological impairment of the mammary gland in vivo and reduced the production of pro-inflammatory mediators in vivo and in vitro. Furthermore, peiminine inhibited the phosphorylation of the protein kinase B (AKT)/ nuclear factor-κB (NF-κB), extracellular regulated protein kinase (ERK1/2), and p38 signaling pathways both in vivo and in vitro. All the results suggested that peiminine exerted potent anti-inflammatory effects on LPS-induced mastitis in mice. Therefore, peiminine might be a potential therapeutic agent for mastitis.

2020 ◽  
Author(s):  
Alexandr Samocha ◽  
Hanna M. Doh ◽  
Vaishnavi Sitarama ◽  
Quy H. Nguyen ◽  
Oghenekevwe Gbenedio ◽  
...  

SummaryDuring puberty, robust morphogenesis occurs in the mammary gland; stem- and progenitor-cells develop into mature basal- and luminal-cells to form the ductal tree. The receptor signals that govern this process in mammary epithelial cells (MECs) are incompletely understood. The EGFR has been implicated and here we focused on EGFR’s downstream pathway component Rasgrp1. We find that Rasgrp1 dampens EGF-triggered signals in MECs. Biochemically and in vitro, Rasgrp1 perturbation results in increased EGFR-Ras-PI3K-AKT and mTORC1-S6 kinase signals, increased EGF-induced proliferation, and aberrant branching-capacity in 3D cultures. However, in vivo, Rasgrp1 perturbation results in delayed ductal tree maturation with shortened branches and reduced cellularity. Rasgrp1-deficient MEC organoids revealed lower frequencies of basal cells, the compartment that incorporates stem cells. Molecularly, EGF effectively counteracts Wnt signal-driven stem cell gene signature in organoids. Collectively, these studies demonstrate the need for fine-tuning of EGFR signals to properly instruct mammary epithelium during puberty.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiyue Zhang ◽  
Li Du ◽  
Jinrong Zhang ◽  
Chunyan Li ◽  
Jie Zhang ◽  
...  

Acute lung injury (ALI) is a respiratory disease that leads to death in severe cases. Hordenine (Hor), a barley-derived natural product, has various biological activities, including anti-inflammatory, and anti-oxidation activities. We investigated the effect of Hor on lipopolysaccharide-induced ALI and its potential mechanism. The anti-inflammatory effects of Hor were detected using in vivo and in vitro models by enzyme-linked immunosorbent assay, real-time polymerase chain reaction, western blotting, and molecular docking simulations. Hor inhibited increases in the levels of inflammatory factors both in vivo and in vitro, and its anti-inflammatory effect inhibited activation of protein kinase B, nuclear factor-κB, and mitogen-activated protein kinase signaling. Hor alleviated lipopolysaccharide-induced ALI by inhibiting inflammatory cytokine increases in vivo and in vitro and shows potential for preventing inflammatory disease.


2005 ◽  
Vol 72 (S1) ◽  
pp. 58-65 ◽  
Author(s):  
Caroline Manhes ◽  
Vincent Goffin ◽  
Paul A Kelly ◽  
Philippe Touraine

Prolactin (PRL) plays a key role in normal growth, development and differentiation of the mammary gland. Indeed, strong evidence suggests that the development of alveolar cells requires not only oestradiol and progesterone, but also PRL. In vitro, PRL has mitogenic activity on normal mouse mammary epithelial cells (reviewed in Das & Vonderhaar, 1997). In vivo, PRL also seems to be involved in such proliferative activity, although it is more difficult to distinguish the role of PRL from the influence of the hormonal milieu (Das & Vonderhaar, 1997). This physiological role of PRL in lobular development of the mammary gland is supported by results obtained from mice deficient for PRL (Horseman et al. 1997) or for its receptor (PRLR) (Ormandy et al. 1997). Although the infertility of females homozygous for the deletion of the PRLR gene (PRLR−/−) can be partially reversed by restoring progesterone levels close to normal, their mammary gland fails to differentiate during pregnancy, leading to lactation failure (Binart et al. 2000). In addition, heterozygous mice (PRLR+/−), who have half normal receptor levels, show impaired mammary gland development and fail to lactate following their first pregnancy, clearly indicating that signals mediated by the PRL/PRLR interaction have to achieve a certain level to permit mammary gland differentiation and lactation (Kelly et al. 2002). Since the pioneering work of Topper (Topper, 1970), who observed that PRL was necessary to induce casein synthesis, our understanding of the mechanism of such induction has greatly expanded. PRL appears to be the primary hormone involved in this activity, although other hormones such as insulin and glucocorticoids are also required for lactation.


Animals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 797 ◽  
Author(s):  
Xin Zhang ◽  
Yifan Wang ◽  
Mengzhi Wang ◽  
Gang Zhou ◽  
Lianmin Chen ◽  
...  

Arginine, a semi-essential functional amino acid, has been found to promote the synthesis of casein in mammary epithelial cells to some extent. Data from mouse indicated that microRNA (miRNA) are important in regulating the development of mammary gland and milk protein synthesis. Whether there are potential links among arginine, miRNA and casein synthesis in bovine mammary gland is uncertain. The objective of the present work was to detect the effects of arginine supplementation on the expression of miRNA associated with casein synthesis in mammary tissue and mammary epithelial cells (BMEC). The first study with bovine mammary epithelial cells (BMEC) focused on screening for miRNA candidates associated with the regulation of casein production by arginine. The BMEC were cultured with three different media, containing 0, 1.6 and 3.2 mM arginine, for 24 h. The expression of candidate miRNA was evaluated. Subsequently, in an in vivo study, 6 Chinese Holstein dairy cows with similar BW (mean ± SE) (512.0 ± 19.6 kg), parity (3), BCS (4.0) and DIM (190 ± 10.3 d) were randomly assigned to three experimental groups. The experimental cows received an infusion of casein, arginine (casein plus double the concentration of arginine in casein), and alanine (casein plus alanine, i.e., iso-nitrogenous to the arginine group) in a replicated 3 × 3 Latin square design with 22 d for each period (7 d for infusion and 15 d for washout). Mammary gland biopsies were obtained from each cow at the end of each infusion period. Results of the in vitro study showed differences between experimental groups and the control group for the expression of nine miRNA: miR-743a, miR-543, miR-101a, miR-760-3p, miR-1954, miR-712, miR-574-5p, miR-468 and miR-875-3p. The in vivo study showed that arginine infusion promoted milk protein content, casein yield and the expression of CSN1S1 and CSN1S2. Furthermore, the expression of miR-743a, miR-543, miR-101a, miR-760-3p, miR-1954, and miR-712 was also greater in response to arginine injection compared with the control or alanine group. Overall, results both in vivo and in vitro revealed that arginine might partly influence casein yield by altering the expression of 6 miRNAs (miR-743a, miR-543, miR-101a, miR-760-3p, miR-1954, and miR-712).


2008 ◽  
Vol 28 (3) ◽  
pp. 181-188
Author(s):  
Kazuharu Kai ◽  
Takatsune Shimizu ◽  
Eiji Sugihara ◽  
Yutaka Yamamoto ◽  
Hirotaka Iwase ◽  
...  

2021 ◽  
Author(s):  
Xudong Wang ◽  
Xinguang Lin ◽  
Zhixin Wan ◽  
Shaohui Wang ◽  
Jiakun Zuo ◽  
...  

Mammary gland-derived Escherichia coli ( E. coli ) is an important pathogen causing dairy cow mastitis. Mammary gland mucosal immunity against infectious E. coli mainly depends on recognition of pathogen-associated molecular patterns by innate receptors. Stimulator of interferon (IFN) gene (STING) has recently been the dominant mediator in reacting to bacterial intrusion and preventing inflammatory disorders. In this study, we firstly proved that diguanylate cyclase YeaJ relieves mouse mammary gland pathological damage by changing E. coli phenotypic and host STING-dependent innate immunity response. YeaJ decreases mammary gland circular vacuoles, bleeding and degeneration in mice. In addition, YeaJ participates in STING-IRF3 signaling to regulate inflammation in vivo . While in vitro , YeaJ decreases damage to macrophages (RAW264.7) but not to mouse mammary epithelial cells (EpH4-Ev). Consistent with the results in mouse mammary gland, yeaJ significantly activates STING/TBK1/IRF3 pathway in RAW264.7 as well. In conclusion, the deletion of yeaJ gene facilitates E. coli NJ17 escape from STING-dependent innate immunity recognition in vitro and in vivo . This study highlights a novel role for YeaJ in E. coli infection, which provides a better understanding of host-bacteria interactions and potential prophylactic strategies for infections. IMPORTANCE E. coli is the etiological agent of environmental mastitis in dairy cows, which cause massive financial losses worldwide. However, the pathophysiological role of yeaJ in the interaction between E. coli and host remains unclear. We found that YeaJ significantly influences various biological characteristics and suppresses severe inflammatory response as well as greater damage. YeaJ alleviates damage to macrophages (RAW264.7) and mouse mammary gland. Moreover, these effects of YeaJ are achieved at least partial by mediating the STING-IRF3 signaling pathway. In conclusion, the deletion of yeaJ gene facilitates E. coli NJ17 escape from STING-dependent innate immunity recognition in vitro and in vivo. This study is the basis for further research to better understand host-bacteria interactions and provides potential prophylactic strategies for infections.


2008 ◽  
Vol 22 (12) ◽  
pp. 2677-2688 ◽  
Author(s):  
Paul G. Tiffen ◽  
Nader Omidvar ◽  
Nuria Marquez-Almuina ◽  
Dawn Croston ◽  
Christine J. Watson ◽  
...  

Abstract Recent studies in breast cancer cell lines have shown that oncostatin M (OSM) not only inhibits proliferation but also promotes cell detachment and enhances cell motility. In this study, we have looked at the role of OSM signaling in nontransformed mouse mammary epithelial cells in vitro using the KIM-2 mammary epithelial cell line and in vivo using OSM receptor (OSMR)-deficient mice. OSM and its receptor were up-regulated approximately 2 d after the onset of postlactational mammary regression, in response to leukemia inhibitory factor (LIF)-induced signal transducer and activator of transcription-3 (STAT3). This resulted in sustained STAT3 activity, increased epithelial apoptosis, and enhanced clearance of epithelial structures during the remodeling phase of mammary involution. Concurrently, OSM signaling precipitated the dephosphorylation of STAT5 and repressed expression of the milk protein genes β-casein and whey acidic protein (WAP). Similarly, during pregnancy, OSM signaling suppressed β-casein and WAP gene expression. In vitro, OSM but not LIF persistently down-regulated phosphorylated (p)-STAT5, even in the continued presence of prolactin. OSM also promoted the expression of metalloproteinases MMP3, MMP12, and MMP14, which, in vitro, were responsible for OSM-specific apoptosis. Thus, the sequential activation of IL-6-related cytokines during mammary involution culminates in an OSM-dependent repression of epithelial-specific gene expression and the potentiation of epithelial cell extinction mediated, at least in part, by the reciprocal regulation of p-STAT5 and p-STAT3.


2022 ◽  
Author(s):  
Zhuo-yue Song ◽  
Mengru Zhu ◽  
Jun Wu ◽  
Tian Yu ◽  
Yao Chen ◽  
...  

The effects of Cucumaria frondosa polysaccharides (CFP) on renal interstitial fibrosis via regulating phosphatidylinositol-3-hydroxykinase/protein kinase-B/Nuclear factor-κB (PI3K/AKT/NF-κB) signaling pathway were investigated in vivo and in vitro in this research. A...


1985 ◽  
Vol 75 (1) ◽  
pp. 269-278 ◽  
Author(s):  
C.A. Carrington ◽  
H.L. Hosick

In order to determine: (1) whether there is a growth-regulating interaction between the mammary fat pad and mammary epithelium; (2) whether this interaction could be modified by dietary fats; and (3) whether these effects could be demonstrated in vitro, the following experiments were performed. Virgin Balb/c mice had the left inguinal mammary fat pad cleared of epithelium and were then maintained on one of four fully defined diets. These diets contained the following proportions of fat by weight: 5% or 10% mixed fats; 20% saturated fat plus cholesterol; or 20% polyunsaturated fat. To test for effects in vivo, animals received subcutaneous injections into the cleared fat pad of tumorigenic mammary cells (WAZ-2T(+SA) or WAZ-2T(-SA)) or preneoplastic mammary cells (CL-S1). Dietary fat had little effect on the latent period of tumour formation, but a low-fat diet increased the invasive/metastatic potential of both tumorigenic cell lines. A high-saturated-fat diet inhibited the growth of normal and preneoplastic epithelium in vivo. To test for effects in vitro, CL-S1 cells were co-cultured with explants of cleared mammary fat pad embedded within collagen gels. CL-S1 cells co-cultured with adipose explants obtained from mice fed on a diet containing 20% polyunsaturated fat showed a threefold increase in incorporation of [3H]thymidine into trichloroacetic acid-precipitable material. These results imply that dietary fats may affect the growth of mammary epithelium in two ways: the inhibition of growth caused by the high-saturated-fat diet may be due to systemic effects as it was not apparent in vitro; the increase in growth seen in vitro and caused by a high-polyunsaturated-fat diet is due to a direct interaction between the mammary fat pad and mammary epithelial cells. This interaction may be masked by systemic effects in vivo.


Sign in / Sign up

Export Citation Format

Share Document