scholarly journals Comparative Proteomic and Physiological Analyses of Two Divergent Maize Inbred Lines Provide More Insights into Drought-Stress Tolerance Mechanisms

2018 ◽  
Vol 19 (10) ◽  
pp. 3225 ◽  
Author(s):  
Tinashe Zenda ◽  
Songtao Liu ◽  
Xuan Wang ◽  
Hongyu Jin ◽  
Guo Liu ◽  
...  

Drought stress is the major abiotic factor threatening maize (Zea mays L.) yield globally. Therefore, revealing the molecular mechanisms fundamental to drought tolerance in maize becomes imperative. Herein, we conducted a comprehensive comparative analysis of two maize inbred lines contrasting in drought stress tolerance based on their physiological and proteomic responses at the seedling stage. Our observations showed that divergent stress tolerance mechanisms exist between the two inbred-lines at physiological and proteomic levels, with YE8112 being comparatively more tolerant than MO17 owing to its maintenance of higher relative leaf water and proline contents, greater increase in peroxidase (POD) activity, along with decreased level of lipid peroxidation under stressed conditions. Using an iTRAQ (isobaric tags for relative and absolute quantification)-based method, we identified a total of 721 differentially abundant proteins (DAPs). Amongst these, we fished out five essential sets of drought responsive DAPs, including 13 DAPs specific to YE8112, 107 specific DAPs shared between drought-sensitive and drought-tolerant lines after drought treatment (SD_TD), three DAPs of YE8112 also regulated in SD_TD, 84 DAPs unique to MO17, and five overlapping DAPs between the two inbred lines. The most significantly enriched DAPs in YE8112 were associated with the photosynthesis antenna proteins pathway, whilst those in MO17 were related to C5-branched dibasic acid metabolism and RNA transport pathways. The changes in protein abundance were consistent with the observed physiological characterizations of the two inbred lines. Further, quantitative real-time polymerase chain reaction (qRT-PCR) analysis results confirmed the iTRAQ sequencing data. The higher drought tolerance of YE8112 was attributed to: activation of photosynthesis proteins involved in balancing light capture and utilization; enhanced lipid-metabolism; development of abiotic and biotic cross-tolerance mechanisms; increased cellular detoxification capacity; activation of chaperones that stabilize other proteins against drought-induced denaturation; and reduced synthesis of redundant proteins to help save energy to battle drought stress. These findings provide further insights into the molecular signatures underpinning maize drought stress tolerance.

2020 ◽  
pp. 34-46 ◽  
Author(s):  
Gali Adamu Ishaku ◽  
Daniel Thakuma Tizhe ◽  
Raji Arabi Bamanga ◽  
Elizabeth Toyin Afolabi

Drought stress in plants has become one of the major abiotic stress that limits the growth and development of plants which also contributes to low yields. Biotechnology which has new and emerging techniques can be use to solve the problem of drought stress in plants. This review aimed at identifying drought stress tolerance in plants at different stages, how plants respond to drought stress using different methods and the application of different biotechnology methods to improve drought tolerance in plants. Some important parameters about drought stress in plants such as drought tolerance mechanisms, plants responses to drought stress, gene regulation for drought stress tolerance in plants, effects of drought stress at different stages of plant growth and biotechnology methods in developing drought tolerance in plants was reviewed. The use of biotechnology methods such as classical breeding, use of genetic manipulation, genes from resurrection plants and Protoplast fusion was discussed. Drought stress affects our plants seriously and it leads to wilts, reduction of yields and death of plants at different developmental stages. Plants have developed different mechanisms to respond to drought stress but these mechanisms are not sufficient enough without the application of biotechnology to greatly improve the growth, development and increase yield in pants. The use of biotechnology greatly improves plants ability to tolerate drought stress depending on the plant species and period of exposure. The use of biotechnology methods has become very vital in improving plants drought stress so as to overcome the major problems of plants which includes increase in population and climatic change.


2020 ◽  
Vol 80 (01) ◽  
Author(s):  
Bhupender Kumar ◽  
Krishan Kumar ◽  
Shankar Lal Jat ◽  
Shraddha Srivastava ◽  
Tanu Tiwari ◽  
...  

Drought stress is the major production constraint in rainfed maize. Screening for drought tolerance is severely affected by the lack of a simple and reliable phenotyping technique. The objective of this study was to standardize a simple hydroponic based drought screening technique in maize. In this context, one week old uniform seedlings of 55 inbreds and 5 hybrids were transferred to hydroponic solution in the glass house. The seedlings were allowed to acclimatize for next one week in hydroponic solution. The drought stress was imposed by removing seedlings from nutrient solution and exposed to air for 6 and 4 hours daily for a period of 5 and 4 consecutive days in hybrids and inbreds, respectively. Data were recorded on all shoot and root parameters, and based on stress symptoms, a drought tolerance score was given to each genotype. The percent deductions in shoot and root fresh weight from non-stress to stress ranged from 11.7 to 84.4 and 2.1 to 77.5, respectively. Six inbred lines, namely, DQL790-4, CML334, CM140, CML422, CM125 and HKI488 and three hybrids namely DMRH1306, DMRH1410 and PMH4 were found drought tolerant. The effectiveness of this screening technique was compared and confirmed using pots screening as well as by expression profiling of key antioxidant genes (Sod2, Sod4, Sod9 and Apx1) playing role in drought stress tolerance. This phenotyping technique is very short, low cost and simple which can be utilized in preliminary drought screening for large set of maize germplasm and mapping populations.


Author(s):  
Pardeep Kumar ◽  
Mukesh Choudhary ◽  
B. S. Jat ◽  
M. C. Dagla ◽  
Vishal Singh ◽  
...  

Abstract This chapter focuses on target traits for drought stress, progress in mapping for drought tolerance-associated genes/QTLs identification and expression studies and introgression strategies followed by the possibilities of integrating the concept of speed breeding in maize drought breeding programmes for better utilization of wild relatives.


2020 ◽  
Author(s):  
Kai Liu ◽  
Mingjuan Li ◽  
Bin Zhang ◽  
Yanchun Cui ◽  
Xuming Yin ◽  
...  

Abstract BackgroundGrain yield is a polygenic trait influenced by environmental and genetic interactions at all growth stages of the cereal plant. However, the molecular mechanisms responsible for coordinating the trade-off or cross-talk between these traits remain elusive.ResultsWe characterized the hitherto unknown function of four STRESS_tolerance and GRAIN_LENGTH (OsSGL) Poaceae ortholog genes, all encoding DUF1645 domain-containing proteins, in simultaneous regulation of grain length, grain weight, and drought stress-tolerance in rice. In normal growth conditions, the four ortholog genes were mainly expressed in the developing roots and panicles of the corresponding species. Over-expressing or heterologous high-level expressing Poaceae OsSGL ortholog genes conferred remarkably increased grain length, weight, and seed setting percentage, as well as significantly improved drought-stress tolerance in transgenic rice. Microscopical analysis also showed that the transgene expression promoted cell division and development. RNA-seq and qRT-PCR analyses revealed 73.8% (18,711) overlapped DEGs in all transgenic plants. Moreover, GO and KEGG analyses of different comparisons revealed that the key DEGs participating in drought stress-response belonged to hormone (especially auxin and cytokinin) pathways, and signaling processes were apparently affected in the young panicles. ConclusionTogether, these results suggest the four OsSGL orthologs perform a conserved function in regulating stress-tolerance and cell growth by acting via a hormone biosynthesis and signaling pathway. It may also induce a strategy for tailor-made crop yield improvement.


Author(s):  
Diksha Sati ◽  
Veni Pande ◽  
Satish Chandra Pandey ◽  
Mukesh Samant

Increased severity of droughts, due to anthropogenic activities and global warming has imposed a severe threat on agricultural productivity ever before. This has further advanced the need for some eco-friendly approaches to ensure global food security. In this regard, application of plant growth-promoting rhizobacteria (PGPR) can be beneficial. PGPR through various mechanisms viz. osmotic adjustments, increased antioxidant, phytohormone production, regulating stomatal conductivity, increased nutrient uptake, releasing Volatile organic compounds (VOCs), and Exo-polysaccharide (EPS) production, etc not only ensures the plant’s survival during drought but also augment its growth. This review, extensively discusses the various mechanisms of PGPR in drought stress tolerance. We have also summarized the recent molecular and omics-based approaches for elucidating the role of drought responsive genes. The manuscript presents an in-depth mechanistic approach to combat the drought stress and also deals with designing PGPR based bioinoculants. Lastly, we present a possible sequence of steps for increasing the success rate of bioinoculants.


Author(s):  
Polavarpu B. Kavi Kishor ◽  
Kalladan Rajesh ◽  
Palakolanu S. Reddy ◽  
Christiane Seiler ◽  
Nese Sreenivasulu

2019 ◽  
Vol 20 (22) ◽  
pp. 5586 ◽  
Author(s):  
Songtao Liu ◽  
Tinashe Zenda ◽  
Anyi Dong ◽  
Yatong Yang ◽  
Xinyue Liu ◽  
...  

Drought stress is a major abiotic factor compromising plant cell physiological and molecular events, consequently limiting crop growth and productivity. Maize (Zea mays L.) is among the most drought-susceptible food crops. Therefore, understanding the mechanisms underlying drought-stress responses remains critical for crop improvement. To decipher the molecular mechanisms underpinning maize drought tolerance, here, we used a comparative morpho-physiological and proteomics analysis approach to monitor the changes in germinating seeds of two incongruent (drought-sensitive wild-type Vp16 and drought-tolerant mutant vp16) lines exposed to polyethylene-glycol-induced drought stress for seven days. Our physiological analysis showed that the tolerant line mutant vp16 exhibited better osmotic stress endurance owing to its improved reactive oxygen species scavenging competency and robust osmotic adjustment as a result of greater cell water retention and enhanced cell membrane stability. Proteomics analysis identified a total of 1200 proteins to be differentially accumulated under drought stress. These identified proteins were mainly involved in carbohydrate and energy metabolism, histone H2A-mediated epigenetic regulation, protein synthesis, signal transduction, redox homeostasis and stress-response processes; with carbon metabolism, pentose phosphate and glutathione metabolism pathways being prominent under stress conditions. Interestingly, significant congruence (R2 = 81.5%) between protein and transcript levels was observed by qRT-PCR validation experiments. Finally, we propose a hypothetical model for maize germinating-seed drought tolerance based on our key findings identified herein. Overall, our study offers insights into the overall mechanisms underpinning drought-stress tolerance and provides essential leads into further functional validation of the identified drought-responsive proteins in maize.


Sign in / Sign up

Export Citation Format

Share Document