scholarly journals Visualization of Annular Gap Junction Vesicle Processing: The Interplay Between Annular Gap Junctions and Mitochondria

2018 ◽  
Vol 20 (1) ◽  
pp. 44 ◽  
Author(s):  
Cheryl Bell ◽  
Teresa Shakespeare ◽  
Amber Smith ◽  
Sandra Murray

It is becoming clear that in addition to gap junctions playing a role in cell–cell communication, gap junction proteins (connexins) located in cytoplasmic compartments may have other important functions. Mitochondrial connexin 43 (Cx43) is increased after ischemic preconditioning and has been suggested to play a protective role in the heart. How Cx43 traffics to the mitochondria and the interactions of mitochondria with other Cx43-containing structures are unclear. In this study, immunocytochemical, super-resolution, and transmission electron microscopy were used to detect cytoplasmic Cx43-containing structures and to demonstrate their interactions with other cytoplasmic organelles. The most prominent cytoplasmic Cx43-containing structures—annular gap junctions—were demonstrated to form intimate associations with lysosomes as well as with mitochondria. Surprisingly, the frequency of associations between mitochondria and annular gap junctions was greater than that between lysosomes and annular gap junctions. The benefits of annular gap junction/mitochondrial associations are not known. However, it is tempting to suggest, among other possibilities, that the contact between annular gap junction vesicles and mitochondria facilitates Cx43 delivery to the mitochondria. Furthermore, it points to the need for investigating annular gap junctions as more than only vesicles destined for degradation.

Author(s):  
Cheryl L. Bell ◽  
Teresa I. Shakespeare ◽  
Sandra A. Murray

It is becoming clear that in addition to gap junctions, playing a role in cell-cell communication, gap junction proteins, connexins, located in cytoplasmic-compartments may have other important functions. Mitochondrial connexin 43 (Cx43) is increased after ischemic preconditioning and has been suggested to play a protective role in the heart. How Cx43 traffics to the mitochondria and the interactions of mitochondria with other Cx43-containing structures are unknown. In this study, immunocytochemical, super-resolution and transmission electron microscopy were used to detect cytoplasmic Cx43-containing structure and to demonstrate their interactions with other cytoplasmic organelles. The most prominent cytoplasmic Cx43-containing structures, annular gap junctions, were demonstrated to form intimate associations with lysosomes as well as with mitochondria. Surprisingly, the frequency of associations between mitochondria and annular gap junctions was greater than that between lysosomes and annular gap junctions. The benefits of annular gap junction/mitochondrial associations are not known. However, it is tempting to suggest that the contact between annular gap junction vesicles and mitochondria facilitates Cx43 deliver to the mitochondria. Furthermore, it points to the need for investigating trafficking of Cx43 to cytoplasmic compartments and annular gap junction as more than only a vesicle destined for degradation.


2020 ◽  
pp. jcs.252726
Author(s):  
Rachael P. Norris ◽  
Mark Terasaki

Gap junctions have well-established roles in cell-cell communication by way of forming permeable intercellular channels. Less is understood about their internalization, which forms double membrane vesicles containing cytosol and membranes from another cell, called connexosomes or annular gap junctions. Here, we systematically investigated the fate of connexosomes in intact ovarian follicles. High pressure frozen, serial sectioned tissue was immunogold labeled for Connexin 43. Within a volume corresponding to ∼35 cells, every labeled structure was categorized and its surface area was measured. Measurements support the concept that multiple connexosomes form from larger invaginated gap junctions. Subsequently, the inner and outer membranes separate, Cx43 immunogenicity is lost from the outer membrane, and the inner membrane appears to undergo fission. One pathway for processing involves lysosomes, based on localization of Cathespin B to some processed connexosomes. In summary, this study demonstrates new technology for high-resolution analyses of gap junction processing.


2017 ◽  
Author(s):  
Rachael M. Kells-Andrews ◽  
Rachel A. Margraf ◽  
Charles G. Fisher ◽  
Matthias M. Falk

ABSTRACTGap junctions (GJs) assembled from connexin (Cx) proteins play a pivotal role in cell-to-cell communication by forming channels that connect the cytosols of adjacent cells. Connexin 43, the best-studied Cx, is ubiquitously expressed in vertebrates. While phosphorylation is known to regulate multiple aspects of GJ function, much less is known about the role ubiquitination plays in these processes. Here we show by using ubiquitination-type specific antibodies and Cx43 lysine (K) to arginine (R) mutants that a portion of Cx43 in GJs can become K63-polyubiquitinated on K264 and K303. Relevant Cx43 K/R mutants assembled significantly larger GJ plaques, exhibited much longer protein half-lives and were internalization impaired. Interestingly, ubiquitin-deficient Cx43 mutants accumulated as hyper-phosphorylated polypeptides in the plasma membrane, suggesting that K63-polyubiquitination may be triggered by phosphorylation. Phospho-specific Cx43 antibodies revealed that upregulated phosphorylation affected serines 368, 279/282, and 255, well-known regulatory PKC and MAPK phosphorylation sites. Together, these novel findings suggest that upon internalization, some Cx43 in GJs becomes K63-polyubiquitinated, ubiquitination is critical for GJ internalization, and that K63-polyubiquitination may be induced by Cx phosphorylation.Summary StatementHere we show that connexin 43 in gap junctions becomes K63-poly ubiquitinated on lysines 264 and 303 and its requirement for gap junction endocytosis. These novel findings significantly contribute to our understanding of GJ turnover and patho-/physiology.Abbreviations usedAGJannular gap junctionAMSHassociated molecule with the SH3 domain of STAMCMEclathrin-mediated endocytosisCxConnexinCx43Connexin 43DUBdeubiquitinaseGJgap junctionMonoUbmonoubiquitinNedd4-1neural precursor cell expressed developmentally down-regulated protein 4-1PMplasma membranePolyUbpolyubiquitinTPA12-O-Tetradecanoylphorbol 13-AcetateTX-100Triton X-100RTroom temperatureUbubiquitin


2020 ◽  
Author(s):  
Rachael P. Norris ◽  
Mark Terasaki

AbstractGap junctions have well-established roles in cell-cell communication by way of forming permeable intercellular channels. Less is understood about their internalization, which forms double membrane vesicles containing cytosol and membranes from another cell, called connexosomes or annular gap junctions. Here, we systematically studied the fate of connexosomes in intact ovarian follicles. High pressure frozen, serial sectioned tissue was immunogold labeled for Connexin 43. Within a volume of electron micrographs, every labeled structure was categorized and counted. Surface area measurements indicate that large connexosomes undergo fission. Subsequent modifications are separation of inner and outer membranes, loss of Cx43 from the outer membrane, and outward budding of the modified membranes. We also documented several clear examples of organelle transfer from one cell to another by gap junction internalization. We discuss how connexosome formation and processing may be a novel means for gap junctions to mediate cell-cell communication.


Development ◽  
1991 ◽  
Vol 111 (2) ◽  
pp. 509-522
Author(s):  
R. Minkoff ◽  
S.B. Parker ◽  
E.L. Hertzberg

Gap junction distribution in the facial primordia of chick embryos at the time of primary palate formation was studied employing indirect immunofluorescence localization with antibodies to gap junction proteins initially identified in rat liver (27 × 10(3) Mr, connexin 32) and heart (43 × 10(3) Mr, connexin 43). Immunolocalization with antibodies to the rat liver gap junction protein (27 × 10(3) Mr) demonstrated a ubiquitous and uniform distribution in all regions of the epithelium and mesenchyme except the nasal placode. In the placodal epithelium, a unique non-random distribution was found characterized by two zones: a very heavy concentration of signal in the superficial layer of cells adjacent to the exterior surface and a region devoid of detectable signal in the interior cell layer adjacent to the mesenchyme. This pattern was seen during all stages of placode invagination that were examined. The separation of gap junctions in distinct cell layers was unique to the nasal placode, and was not found in any other region of the developing primary palate. One other tissue was found that exhibited this pattern-the developing neural epithelium of the brain and retina. These observations suggest the presence of region-specific signaling mechanisms and, possibly, an impedance of cell communication among subpopulations of cells in these structures at critical stages of development. Immunolocalization with antibodies to the ‘heart’ 43 × 10(3) Mr gap junction protein also revealed the presence of gap junction protein in facial primordia and neural epithelium. A non-uniform distribution of immunoreactivity was also observed for connexin 43.


2001 ◽  
Vol 357 (2) ◽  
pp. 489-495 ◽  
Author(s):  
Leonard SHORE ◽  
Pauline McLEAN ◽  
Susan K. GILMOUR ◽  
Malcolm B. HODGINS ◽  
Malcolm E. FINBOW

The control of cell–cell communication through gap junctions is thought to be crucial in normal tissue function and during various stages of tumorigenesis. However, few natural regulators of gap junctions have been found. We show here that increasing the activity of ornithine decarboxylase, or adding polyamines to the outside of cells, increases the level of gap junction communication between various epithelial cells. Conversely, reduction of ornithine decarboxylase activity decreases the level of gap junction communication. This regulation is dependent upon the expression of connexin 43 (Cx43 or Cxα1), which is a major connexin expressed in many different cell types, and involves an increase in Cx43 and its cellular re-distribution.


2020 ◽  
Vol 40 (1) ◽  
Author(s):  
Jin-Ting He ◽  
Xiao-Yan LI ◽  
Le Yang ◽  
Xin Zhao

Abstract Connexins are the membrane proteins that form high-conductance plasma membrane channels and are the important constituents of gap junctions and hemichannels. Among different types of connexins, connexin 43 is the most widely expressed and studied gap junction proteins in astrocytes. Due to the key involvement of astrocytes in memory impairment and abundant expression of connexins in astrocytes, astroglial connexins have been projected as key therapeutic targets for Alzheimer’s disease. On the other hand, the role of connexin gap junctions and hemichannels in memory formation and consolidation has also been reported. Moreover, deletion of these proteins and loss of gap junction communication result in loss of short-term spatial memory. Accordingly, both memory formation and memory deteriorating functions of astrocytes-located connexins have been documented. Physiologically expressed connexins may be involved in the memory formation, while pathologically increased expression of connexins with consequent excessive activation of astrocytes may induce neuronal injury and cognitive decline. The present review describes the memory formation as well as memory deteriorating functions of astroglial connexins in memory disorders of different etiology with possible mechanisms.


2021 ◽  
pp. mbc.E20-12-0797
Author(s):  
Caitlin Hyland ◽  
Michael Mfarej ◽  
Giorgos Hiotis ◽  
Sabrina Lancaster ◽  
Noelle Novak ◽  
...  

Gap junctions mediate direct cell-to-cell communication by forming channels that physically couple cells, thereby linking their cytoplasm, permitting the exchange of molecules, ions, and electrical impulses. Gap junctions are assembled from connexin (Cx) proteins, with connexin 43 (Cx43) being the most ubiquitously expressed and best studied. While the molecular events that dictate the Cx43 life cycle have largely been characterized, the unusually short half-life of connexins of only 1-5 hours, resulting in constant endocytosis and biosynthetic replacement of gap junction channels has remained puzzling. The Cx43 C-terminal (CT) domain serves as the regulatory hub of the protein affecting all aspects of gap junction function. Here, deletion within the Cx43 CT (amino acids 256-289), a region known to encode key residues regulating gap junction turnover is employed to examine the effects of dysregulated Cx43 gap junction endocytosis using cultured cells (Cx43∆256-289) and a zebrafish model ( cx43lh10). We report that this CT deletion causes defective gap junction endocytosis as well as increased gap junction intercellular communication (GJIC). Increased Cx43 protein content in cx 43lh10 zebrafish, specifically in the cardiac tissue, larger gap junction plaques and longer Cx43 protein half-lives coincide with severely impaired development. Our findings demonstrate for the first time that Cx43 gap junction endocytosis is an essential aspect of gap junction function and when impaired, gives rise to significant physiological problems as revealed here for cardiovascular development and function. [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text]


1988 ◽  
Vol 91 (3) ◽  
pp. 415-421 ◽  
Author(s):  
J. Kistler ◽  
S. Bullivant

MIP and MP70 are putative gap junction components in the plasma membranes of the mammalian lens fibre cells. We show now that MP70 can be solubilized separately from MIP in mild detergent solutions, and that this treatment results in the dissociation of the fibre gap junctions. Solubilized MP70 was isolated as 16.9 S particles by velocity gradient centrifugation and in the electron microscope had the appearance of short double-membrane structures consistent with connexon-pairs. These observations open a new experimental avenue in which to characterize separately the two putative lens gap junction proteins structurally and functionally.


1995 ◽  
Vol 268 (4) ◽  
pp. C968-C977 ◽  
Author(s):  
R. Lal ◽  
S. A. John ◽  
D. W. Laird ◽  
M. F. Arnsdorf

Current structural models of gap junctions indicate two apposed plasma membranes with hexagonally packed hemichannels in each membrane aligning end to end. These channels connect the cytoplasms of contacting cells. Images of isolated rat heart gap junctions have been made with the atomic force microscope in aqueous media. We show that native cardiac gap junctions have a thickness of 25 +/- 0.6 nm. This decreases to 17 nm when they are treated with trypsin, which is known to remove some cytoplasmic components of connexin 43. Imaging shows subunits with a center to center spacing of approximately 9-10 nm and long range hexagonal packing, measurements in agreement with studies using freeze-fracture and negative-stain electron microscopy. In addition to gap junctions, we imaged structures that had all the characteristics of native gap junctions except their thickness was limited to 9-11 nm. They also show long range hexagonal packing and center to center spacing of 9-10 nm. These structures decrease in thickness, to 6-9 nm, when treated with trypsin. We have called these structures hemiplaques. They appear to be present endogenously in the preparation, as we have ruled out their being an artifact of imaging by AFM. However, it remains to be determined if they are a consequence of the procedure used in isolating gap junctions or a possible intermediary in gap junction formation.


Sign in / Sign up

Export Citation Format

Share Document