scholarly journals Silencing of Transcription Factor Sp1 Promotes SN1 Transporter Regulation by Ammonia in Mouse Cortical Astrocytes

2019 ◽  
Vol 20 (2) ◽  
pp. 234 ◽  
Author(s):  
Katarzyna Dąbrowska ◽  
Magdalena Zielińska

The involvement of the astrocytic SN1 (SNAT3) transporter in ammonia-induced l-glutamine retention was recently documented in mouse-cultured astrocytes. Here we investigated the involvement of specificity protein 1 (Sp1) transcription factor in SN1 regulation in ammonium chloride (“ammonia”)-treated astrocytes. Sp1 expression and its cellular localization were determined using real-time qPCR, Western blot, and confocal microscopy. Sp1 binding to Snat3 promoter was analyzed by chromatin immunoprecipitation. The role of Sp1 in SN1 expression and SN1-mediated [3H]glutamine uptake in ammonia-treated astrocytes was verified using siRNA and mithramycin A. The involvement of protein kinase C (PKC) isoforms in Sp1 level/phosphorylation status was verified using siRNA technology. Sp1 translocation to the nuclei and its enhanced binding to the Snat3 promoter, along with Sp1 dependence of system N-mediated [3H]glutamine uptake, were observed in astrocytes upon ammonia exposure. Ammonia decreased the level of phosphorylated Sp1, and the effect was reinforced by long-term incubation with PKC modulator, phorbol 12-myristate 13-acetate, which is a treatment likely to dephosphorylate Sp1. Furthermore, silencing of the PKCδ isoform appears to enhance the ammonia effect on the Sp1 level. Collectively, the results demonstrate the regulatory role of Sp1 in regulation of SN1 expression and activity in ammonia-treated astrocytes and implicate altered Sp1 phosphorylation status in this capacity.

Author(s):  
Katarzyna Dąbrowska ◽  
Magdalena Zielińska

The involvement of astrocytic SN1 (SNAT3) transporter in ammonia-induced L-glutamine retention was recently documented in mouse cultured astrocytes. Here we investigated the involvement of specificity protein 1 (Sp1) transcription factor in SN1 regulation in ammonium chloride (“ammonia”)-treated astrocytes. Sp1 expression and its cellular localization were determined using real-time qPCR, Western blot and confocal microscopy, respectively. Sp1 binding to Snat3 promoter was analyzed by chromatin immunoprecipitation. Ammonia-induced Sp1 regulatory role in SN1-mediated [3H]glutamine transport was verified using siRNA and mithramycin A. The involvement of protein kinase C (PKC) isoforms in Sp1 level/phosphorylation status was verified using siRNA technology. Sp1 translocation to the nuclei and its enhanced binding to Snat3 promoter, along with Sp1 dependence of system N-mediated [3H]glutamine transport were observed in astrocytes upon ammonia exposure. Ammonia decreased the level of phosphorylated Sp1, and the effect was reinforced by long-term incubation with PKC modulator, phorbol 12-myristate 13-acetate, a treatment likely to dephosphorylate Sp1. Furthermore,  silencing of PKCδ isoform abolished the increase of Sp1 level by ammonia. Collectively, the results demonstrate the regulatory role of Sp1 in regulation of SN1 expression and activity in ammonia-treated astrocytes and implicate altered Sp1 phosphorylation status in this capacity.


2020 ◽  
Vol 21 (3) ◽  
pp. 1153 ◽  
Author(s):  
Vellingiri ◽  
Iyer ◽  
Devi Subramaniam ◽  
Jayaramayya ◽  
Siama ◽  
...  

Ovarian cancer (OC) is one of the deadliest cancers among women contributing to high risk of mortality, mainly owing to delayed detection. There is no specific biomarker for its detection in early stages. However, recent findings show that over-expression of specificity protein 1 (Sp1) is involved in many OC cases. The ubiquitous transcription of Sp1 apparently mediates the maintenance of normal and cancerous biological processes such as cell growth, differentiation, angiogenesis, apoptosis, cellular reprogramming and tumorigenesis. Sp1 exerts its effects on cellular genes containing putative GC–rich Sp1–binding site in their promoters. A better understanding of the mechanisms underlying Sp1 transcription factor (TF) regulation and functions in OC tumorigenesis could help identify novel prognostic markers, to target cancer stem cells (CSCs) by following cellular reprogramming and enable the development of novel therapies for future generations. In this review, we address the structure, function, and biology of Sp1 in normal and cancer cells, underpinning the involvement of Sp1 in OC tumorigenesis. In addition, we have highlighted the influence of Sp1 TF in cellular reprogramming of iPSCs and how it plays a role in controlling CSCs. This review highlights the drugs targeting Sp1 and their action on cancer cells. In conclusion, we predict that research in this direction will be highly beneficial for OC treatment, and chemotherapeutic drugs targeting Sp1 will emerge as a promising therapy for OC.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hamish Patel ◽  
Reza Zamani

Abstract Long-term memories are thought to be stored in neurones and synapses that undergo physical changes, such as long-term potentiation (LTP), and these changes can be maintained for long periods of time. A candidate enzyme for the maintenance of LTP is protein kinase M zeta (PKMζ), a constitutively active protein kinase C isoform that is elevated during LTP and long-term memory maintenance. This paper reviews the evidence and controversies surrounding the role of PKMζ in the maintenance of long-term memory. PKMζ maintains synaptic potentiation by preventing AMPA receptor endocytosis and promoting stabilisation of dendritic spine growth. Inhibition of PKMζ, with zeta-inhibitory peptide (ZIP), can reverse LTP and impair established long-term memories. However, a deficit of memory retrieval cannot be ruled out. Furthermore, ZIP, and in high enough doses the control peptide scrambled ZIP, was recently shown to be neurotoxic, which may explain some of the effects of ZIP on memory impairment. PKMζ knockout mice show normal learning and memory. However, this is likely due to compensation by protein-kinase C iota/lambda (PKCι/λ), which is normally responsible for induction of LTP. It is not clear how, or if, this compensatory mechanism is activated under normal conditions. Future research should utilise inducible PKMζ knockdown in adult rodents to investigate whether PKMζ maintains memory in specific parts of the brain, or if it represents a global memory maintenance molecule. These insights may inform future therapeutic targets for disorders of memory loss.


2021 ◽  
Vol 12 (9) ◽  
Author(s):  
Xuexiu Zhang ◽  
Jianning Yao ◽  
Haoling Shi ◽  
Bing Gao ◽  
Haining Zhou ◽  
...  

AbstractCircular RNAs (circRNAs) have been reported to play crucial roles in the progression of various cancers, including colorectal cancer (CRC). SP1 (Sp1 transcription factor) is a well-recognized oncogene in CRC and is deemed to trigger the Wnt/β-catenin pathway. The present study was designed to investigate the role of circRNAs which shared the same pre-mRNA with SP1 in CRC cells. We identified that hsa_circ_0026628 (circ_0026628), a circular RNA that originated from SP1 pre-mRNA, was upregulated in CRC cells. Sanger sequencing and agarose gel electrophoresis verified the circular characteristic of circ_0026628. Functional assays including CCK-8, colony formation, transwell, immunofluorescence staining, and sphere formation assay revealed the function of circ_0026628. RNA pull-down and mass spectrometry disclosed the proteins interacting with circ_0026628. Mechanistic assays including RIP, RNA pull-down, CoIP, ChIP, and luciferase reporter assays demonstrated the interplays between molecules. The results depicted that circ_0026628 functioned as a contributor to CRC cell proliferation, migration, EMT, and stemness. Mechanistically, circ_0026628 served as the endogenous sponge of miR-346 and FUS to elevate SP1 expression at the post-transcriptional level, thus strengthening the interaction between SP1 and β-catenin to activate the Wnt/β-catenin pathway. In turn, the downstream gene of Wnt/β-catenin signaling, SOX2 (SRY-box transcription factor 2), transcriptionally activated SP1 and therefore boosted circ_0026628 level. On the whole, SOX2-induced circ_0026628 sponged miR-346 and recruited FUS protein to augment SP1, triggering the downstream Wnt/β-catenin pathway to facilitate CRC progression.


1996 ◽  
Vol 16 (4) ◽  
pp. 1842-1850 ◽  
Author(s):  
G Baier-Bitterlich ◽  
F Uberall ◽  
B Bauer ◽  
F Fresser ◽  
H Wachter ◽  
...  

T-lymphocyte stimulation requires activation of several protein kinases, including the major phorbol ester receptor protein kinase C (PKC), ultimately leading to induction of lymphokines, such as interleukin-2 (IL-2). The revelant PKC isoforms which are involved in the activation cascades of nuclear transcription factors involved in IL-2 production have not yet been clearly defined. We have examined the potential role of two representative PKC isoforms in the induction of the IL-2 gene, i.e., PKC-alpha and PKC-theta, the latter being expressed predominantly in hematopoietic cell lines, particularly T cells. Similar to that of PKC-alpha, PKC-theta overexpression in murine EL4 thymoma cells caused a significant increase in phorbol 12-myristate 13-acetate (PMA)-induced transcriptional activation of full-length IL-2-chloramphenicol acetyltransferase (CAT) and NF-AT-CAT but not of NF-IL2A-CAT or NF-kappaB promoter-CAT reporter gene constructs. Importantly, the critical AP-1 enhancer element was differentially modulated by these two distinct PKC isoenzymes, since only PKC-theta but not PKC-alpha overexpression resulted in an approximately 2.8-fold increase in AP-1-collagenase promoter CAT expression in comparison with the vector control. Deletion of the AP-1 enhancer site in the collagenase promoter rendered it unresponsive to PKC-theta. Expression of a constitutively active mutant PKC-theta A148E (but not PKC-alpha A25E) was sufficient to induce activation of AP-1 transcription factor complex in the absence of PMA stimulation. Conversely, a catalytically inactive PKC-theta K409R (but not PKC-alpha K368R) mutant abrogated endogenous PMA-mediated activation of AP-1 transcriptional complex. Dominant negative mutant Ha-RasS17N completely inhibited the PKC-O A148E-induced signal, PKC-O. Expression of a constitutively active mutant PKC-O A148E (but not PKC-alpha A25E) was sufficient to induce activation of AP-1 transcription factor complex in the absence of PMA stimulation. Conversely, a catalytically inactive PKC-O K409R (but not PKC-alpha K368R) mutant abrogated endogenous PMA-mediated activation of AP-1 transcriptional complex. Dominant negative mutant Ha-enRasS17N completely inhibited in the PKC-O A148E-induced signal, identifying PKC-theta as a specific constituent upstream of or parallel to Ras in the signaling cascade leading to AP transcriptional activation.


Life Sciences ◽  
2008 ◽  
Vol 83 (9-10) ◽  
pp. 305-312 ◽  
Author(s):  
Solomon S. Solomon ◽  
Gipsy Majumdar ◽  
Antonio Martinez-Hernandez ◽  
Rajendra Raghow

2002 ◽  
Vol 283 (2) ◽  
pp. E338-E345 ◽  
Author(s):  
Masatoshi Tsuru ◽  
Hideki Katagiri ◽  
Tomoichiro Asano ◽  
Tetsuya Yamada ◽  
Shigeo Ohno ◽  
...  

To elucidate the involvement of protein kinase C (PKC) isoforms in insulin-induced and phorbol ester-induced glucose transport, we expressed several PKC isoforms, conventional PKC-α, novel PKC-δ, and atypical PKC isoforms of PKC-λ and PKC-ζ, and their mutants in 3T3-L1 adipocytes using an adenovirus-mediated gene transduction system. Endogenous expression and the activities of PKC-α and PKC-λ/ζ, but not of PKC-δ, were detected in 3T3-L1 adipocytes. Overexpression of each wild-type PKC isoform induced a large amount of PKC activity in 3T3-L1 adipocytes. Phorbol 12-myristrate 13-acetate (PMA) activated PKC-α and exogenous PKC-δ but not atypical PKC-λ/ζ. Insulin also activated the overexpressed PKC-δ but not PKC-α. Expression of the wild-type PKC-α or PKC-δ resulted in significant increases in glucose transport activity in the basal and PMA-stimulated states. Dominant-negative PKC-α expression, which inhibited the PMA activation of PKC-α, decreased in PMA-stimulated glucose transport. Glucose transport activity in the insulin-stimulated state was increased by the expression of PKC-δ but not of PKC-α. These findings demonstrate that both conventional and novel PKC isoforms are involved in PMA-stimulated glucose transport and that other novel PKC isoforms could participate in PMA-stimulated and insulin-stimulated glucose transport. Atypical PKC-λ/ζ was not significantly activated by insulin, and expression of the wild-type, constitutively active, and dominant-negative mutants of atypical PKC did not affect either basal or insulin-stimulated glucose transport. Thus atypical PKC enzymes do not play a major role in insulin-stimulated glucose transport in 3T3-L1 adipocytes.


2001 ◽  
Vol 280 (4) ◽  
pp. G572-G583 ◽  
Author(s):  
Q. Chang ◽  
B. L. Tepperman

Tumor necrosis factor (TNF)-α can induce cytotoxicity and apoptosis in a number of cell types and has been implicated in the regulation of many inflammatory processes. It has been suggested that protein kinase C (PKC) is one of the intracellular mediators of the actions of TNF-α. In the present study, the role of PKC isoforms in TNF-α-mediated cytotoxicity and apoptosis in intestinal cells was investigated using the rat epithelial cell line, IEC-18. Cells were incubated with TNF-α in the presence or absence of the transcription inhibitor actinomycin D (AMD). The extent of cell damage was enhanced when AMD was added to incubation medium, suggesting that new protein synthesis plays a role in the cytotoxic action of TNF. TNF-α also induced the translocation of PKC-α, -δ, and -ε from cytosol to the membrane fraction of the intestinal cells. Furthermore, the cytotoxic and apoptotic effects of TNF were reduced by pretreating the cells with the PKC-ε translocation inhibitor, PKC-εV1–2. In contrast, although cells incubated with the phorbol ester phorbol 12-myristate 13-acetate (PMA) also displayed an increase in cell injury, the extent of cytotoxicity and apoptosis was not enhanced by AMD. Furthermore, PMA-induced cell damage was reduced by rottlerin, a PKC-δ inhibitor. Caspase-3, an enzyme implicated in the mediation of apoptosis, was activated in cells in response to either TNF-α or PMA stimulation, and its effects on this activity were reduced by selective inhibition of PKC-ε and -δ, respectively. Furthermore, inhibition of caspase-3 activity reduced apoptosis. These data suggest that activation of selective PKC isoforms mediate the effects of TNF-α on intestinal epithelial cell injury.


Sign in / Sign up

Export Citation Format

Share Document