scholarly journals Transcriptional and Metabolomic Analyses Indicate that Cell Wall Properties are Associated with Drought Tolerance in Brachypodium distachyon

2019 ◽  
Vol 20 (7) ◽  
pp. 1758 ◽  
Author(s):  
Ingo Lenk ◽  
Lorraine Fisher ◽  
Martin Vickers ◽  
Aderemi Akinyemi ◽  
Thomas Didion ◽  
...  

Brachypodium distachyon is an established model for drought tolerance. We previously identified accessions exhibiting high tolerance, susceptibility and intermediate tolerance to drought; respectively, ABR8, KOZ1 and ABR4. Transcriptomics and metabolomic approaches were used to define tolerance mechanisms. Transcriptional analyses suggested relatively few drought responsive genes in ABR8 compared to KOZ1. Linking these to gene ontology (GO) terms indicated enrichment for “regulated stress response”, “plant cell wall” and “oxidative stress” associated genes. Further, tolerance correlated with pre-existing differences in cell wall-associated gene expression including glycoside hydrolases, pectin methylesterases, expansins and a pectin acetylesterase. Metabolomic assessments of the same samples also indicated few significant changes in ABR8 with drought. Instead, pre-existing differences in the cell wall-associated metabolites correlated with drought tolerance. Although other features, e.g., jasmonate signaling were suggested in our study, cell wall-focused events appeared to be predominant. Our data suggests two different modes through which the cell wall could confer drought tolerance: (i) An active response mode linked to stress induced changes in cell wall features, and (ii) an intrinsic mode where innate differences in cell wall composition and architecture are important. Both modes seem to contribute to ABR8 drought tolerance. Identification of the exact mechanisms through which the cell wall confers drought tolerance will be important in order to inform development of drought tolerant crops.

Plants ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 89 ◽  
Author(s):  
Lazar Novaković ◽  
Tingting Guo ◽  
Antony Bacic ◽  
Arun Sampathkumar ◽  
Kim Johnson

Plant cells are surrounded by highly dynamic cell walls that play important roles regulating aspects of plant development. Recent advances in visualization and measurement of cell wall properties have enabled accumulation of new data about wall architecture and biomechanics. This has resulted in greater understanding of the dynamics of cell wall deposition and remodeling. The cell wall is the first line of defense against different adverse abiotic and biotic environmental influences. Different abiotic stress conditions such as salinity, drought, and frost trigger production of Reactive Oxygen Species (ROS) which act as important signaling molecules in stress activated cellular responses. Detection of ROS by still-elusive receptors triggers numerous signaling events that result in production of different protective compounds or even cell death, but most notably in stress-induced cell wall remodeling. This is mediated by different plant hormones, of which the most studied are jasmonic acid and brassinosteroids. In this review we highlight key factors involved in sensing, signal transduction, and response(s) to abiotic stress and how these mechanisms are related to cell wall-associated stress acclimatization. ROS, plant hormones, cell wall remodeling enzymes and different wall mechanosensors act coordinately during abiotic stress, resulting in abiotic stress wall acclimatization, enabling plants to survive adverse environmental conditions.


2018 ◽  
Vol 15 (1) ◽  
pp. 87-100 ◽  
Author(s):  
Puja Chandrayan

Pectin is an integral part of plant cell wall and since centuries pectin extracted from plants is widely used in food and fruit juice processing. Moreover, in last half century, the applications have also invaded into many bio-processing applications such as pharmaceutical, bioenergy, textile, paper and tea processing. In these growing industries, the use of pectinases has grown with a significant amount i.e. approximately 10 % of total global enzyme market comes from pectinases. Herein comprehensive analyses of information related to structure and function of pectin in plant cell wall as well as structural classes of pectins have been discussed. The major function of pectin is in cementing the cellulose and hemicelluloses network, cell-cell adhesion and plant defence. Keeping the wide use of pectin in food industry and growing need of environment friendly technology for pectin extraction has accelerated the demand of pectin degrading enzymes (PDEs). PDEs are from three enzyme classes: carbohydrate esterases from CE8 and CE12 family, glycoside hydrolases from GH28 family and lyases from PL1, 2, 3, 9 and 10. We have reviewed the literature related to abundance and structure-function of these abovementioned enzymes from bacteria. From the current available literature, we found very limited information is present about thermostable PDEs. Hence, in future it could be a topic of study to gain the insight about structure-function of enzymes together with the expanded role of thermostable enzymes in development of bioprocesses based on these enzymes.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Josefat Gregorio Jorge ◽  
Miguel Angel Villalobos-López ◽  
Karen Lizeth Chavarría-Alvarado ◽  
Selma Ríos-Meléndez ◽  
Melina López-Meyer ◽  
...  

Abstract Background Common bean (Phaseolus vulgaris L.) is a relevant crop cultivated over the world, largely in water insufficiency vulnerable areas. Since drought is the main environmental factor restraining worldwide crop production, efforts have been invested to amend drought tolerance in commercial common bean varieties. However, scarce molecular data are available for those cultivars of P. vulgaris with drought tolerance attributes. Results As a first approach, Pinto Saltillo (PS), Azufrado Higuera (AH), and Negro Jamapa Plus (NP) were assessed phenotypically and physiologically to determine the outcome in response to drought on these common bean cultivars. Based on this, a Next-generation sequencing approach was applied to PS, which was the most drought-tolerant cultivar to determine the molecular changes at the transcriptional level. The RNA-Seq analysis revealed that numerous PS genes are dynamically modulated by drought. In brief, 1005 differentially expressed genes (DEGs) were identified, from which 645 genes were up-regulated by drought stress, whereas 360 genes were down-regulated. Further analysis showed that the enriched categories of the up-regulated genes in response to drought fit to processes related to carbohydrate metabolism (polysaccharide metabolic processes), particularly genes encoding proteins located within the cell periphery (cell wall dynamics). In the case of down-regulated genes, heat shock-responsive genes, mainly associated with protein folding, chloroplast, and oxidation-reduction processes were identified. Conclusions Our findings suggest that secondary cell wall (SCW) properties contribute to P. vulgaris L. drought tolerance through alleviation or mitigation of drought-induced osmotic disturbances, making cultivars more adaptable to such stress. Altogether, the knowledge derived from this study is significant for a forthcoming understanding of the molecular mechanisms involved in drought tolerance on common bean, especially for drought-tolerant cultivars such as PS.


Cells ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 2478
Author(s):  
Xingwen Wu ◽  
Antony Bacic ◽  
Kim L. Johnson ◽  
John Humphries

The plant cell wall plays a critical role in signaling responses to environmental and developmental cues, acting as both the sensing interface and regulator of plant cell integrity. Wall-associated kinases (WAKs) are plant receptor-like kinases located at the wall—plasma membrane—cytoplasmic interface and implicated in cell wall integrity sensing. WAKs in Arabidopsis thaliana have been shown to bind pectins in different forms under various conditions, such as oligogalacturonides (OG)s in stress response, and native pectin during cell expansion. The mechanism(s) WAKs use for sensing in grasses, which contain relatively low amounts of pectin, remains unclear. WAK genes from the model monocot plant, Brachypodium distachyon were identified. Expression profiling during early seedling development and in response to sodium salicylate and salt treatment was undertaken to identify WAKs involved in cell expansion and response to external stimuli. The BdWAK2 gene displayed increased expression during cell expansion and stress response, in addition to playing a potential role in the hypersensitive response. In vitro binding assays with various forms of commercial polysaccharides (pectins, xylans, and mixed-linkage glucans) and wall-extracted fractions (pectic/hemicellulosic/cellulosic) from both Arabidopsis and Brachypodium leaf tissues provided new insights into the binding properties of BdWAK2 and other candidate BdWAKs in grasses. The BdWAKs displayed a specificity for the acidic pectins with similar binding characteristics to the AtWAKs.


2016 ◽  
Vol 35 (3) ◽  
pp. 527-539 ◽  
Author(s):  
Magdalena Szechyńska-Hebda ◽  
Weronika Czarnocka ◽  
Marek Hebda ◽  
Stanisław Karpiński

2019 ◽  
Author(s):  
Leszek Michalak ◽  
Sabina Leanti La Rosa ◽  
Shaun Allan Leivers ◽  
Lars Jordhøy Lindstad ◽  
Åsmund Røhr Kjendseth ◽  
...  

Abstractβ-Mannans and xylans are important components of the plant cell wall and they are acetylated to be protected from degradation by glycoside hydrolases. β-Mannans are widely present in human and animal diets as fiber from leguminous plants and as thickeners and stabilizers in processed foods. There are many fully characterized acetylxylan esterases (AcXEs), however, the enzymes deacetylating mannans are less understood. Here we present two carbohydrate esterases, RiCE2 and RiCEX, from the Firmicute Roseburia intestinalis, which together deacetylate complex galactoglucomannan (GGM). The 3D-structure of RiCEX with a mannopentaose in the active site shows that the CBM35 domain of RiCEX forms a confined complex, where the axially oriented C2-hydroxyl of a mannose residue points towards the Ser41 of the catalytic triad. Cavities on the RiCEX surface may accept galactosylations at the C6 positions of mannose adjacent to the mannose residue being deacetylated (subsite −1 and +1). In depth characterization of the two enzymes using time-resolved NMR, HPLC and mass spectrometry demonstrates that they work in a complementary manner. RiCEX exclusively removes the axially oriented 2-O-acetylations on any mannose residue in an oligosaccharide, including double acetylated mannoses, while the RiCE2 is active on 3-O-, 4-O- and 6-O-acetylations. Activity of RiCE2 is dependent on RiCEX removing 2-O-acetylations from double acetylated mannose. Furthermore, transacetylation of oligosaccharides with the 2-O specific RiCEX provided new insight to how temperature and pH affects acetyl migration on mannooligosaccharides.Significance statementAcetylations are an important feature of hemicellulose, altering the physical properties of the plant cell wall, and limiting enzyme accessibility. Removal of acetyl groups from beta-mannan is a key step towards efficient utilization of mannans as a carbon source for gut microbiota and in biorefineries. We present detailed insight into mannan deacetylation by two highly substrate-specific acetyl-mannan esterases (AcMEs) from a prevalent gut commensal Firmicute, which cooperatively deacetylate complex galactoglucomannan. The 3D structure of RiCEX with mannopentaose in the active site has a unique two-domain architecture including a CBM35 and an SGNH superfamily hydrolytic domain. Discovery of mannan specific esterases improves the understanding of an important step in dietary fiber utilization by gut commensal Firmicutes.


2021 ◽  
Vol 22 (17) ◽  
pp. 9359
Author(s):  
Vahideh Rafiei ◽  
Heriberto Vélëz ◽  
Georgios Tzelepis

Phytopathogenic fungi need to secrete different hydrolytic enzymes to break down complex polysaccharides in the plant cell wall in order to enter the host and develop the disease. Fungi produce various types of cell wall degrading enzymes (CWDEs) during infection. Most of the characterized CWDEs belong to glycoside hydrolases (GHs). These enzymes hydrolyze glycosidic bonds and have been identified in many fungal species sequenced to date. Many studies have shown that CWDEs belong to several GH families and play significant roles in the invasion and pathogenicity of fungi and oomycetes during infection on the plant host, but their mode of function in virulence is not yet fully understood. Moreover, some of the CWDEs that belong to different GH families act as pathogen-associated molecular patterns (PAMPs), which trigger plant immune responses. In this review, we summarize the most important GHs that have been described in eukaryotic phytopathogens and are involved in the establishment of a successful infection.


2019 ◽  
Vol 85 (15) ◽  
Author(s):  
Stephanie L. Mathews ◽  
Haylea Hannah ◽  
Hillary Samagaio ◽  
Camille Martin ◽  
Eleanor Rodriguez-Rassi ◽  
...  

ABSTRACTAgrobacterium tumefaciensis a rhizosphere bacterium that can infect wound sites on plants. The bacterium transfers a segment of DNA (T-DNA) from the Ti plasmid to the plant host cell via a type IV secretion system where the DNA becomes integrated into the host cell chromosomes. The expression of T-DNA in the plant results in tumor formation. Although the binding of the bacteria to plant surfaces has been studied previously, there is little work on possible interactions of the bacteria with the plant cell wall. Seven of the 48 genes encoding putative glycoside hydrolases (Atu2295,Atu2371,Atu3104,Atu3129,Atu4560,Atu4561, andAtu4665) in the genome ofA. tumefaciensC58 were found to play a role in virulence on tomato andBryophyllum daigremontiana. Two of these genes (pglAandpglB;Atu3129andAtu4560) encode enzymes capable of digesting polygalacturonic acid and, thus, may play a role in the digestion of pectin. One gene (arfA;Atu3104) encodes an arabinosylfuranosidase, which could remove arabinose from the ends of polysaccharide chains. Two genes (bglAandbglB;Atu2295andAtu4561) encode proteins with β-glycosidase activity and could digest a variety of plant cell wall oligosaccharides and polysaccharides. One gene (xynA;Atu2371) encodes a putative xylanase, which may play a role in the digestion of xylan. Another gene (melA;Atu4665) encodes a protein with α-galactosidase activity and may be involved in the breakdown of arabinogalactans. Limited digestion of the plant cell wall byA. tumefaciensmay be involved in tumor formation on tomato andB. daigremontiana.IMPORTANCEA. tumefaciensis used in the construction of genetically engineered plants, as it is able to transfer DNA to plant hosts. Knowledge of the mechanisms of DNA transfer and the genes required will aid in the understanding of this process. Manipulation of glycoside hydrolases may increase transformation and widen the host range of the bacterium.A. tumefaciensalso causes disease (crown gall tumors) on a variety of plants, including stone fruit trees, grapes, and grafted ornamentals such as roses. It is possible that compounds that inhibit glycoside hydrolases could be used to control crown gall disease caused byA. tumefaciens.


2019 ◽  
Author(s):  
Anuj Shukla ◽  
Mandeep Kaur ◽  
Swati Kanwar ◽  
Gazaldeep Kaur ◽  
Shivani Sharma ◽  
...  

AbstractInositol pyrophosphates (PPx-InsPs) are important signalling molecules, those participate in multiple physiological processes across wide range of species. However, limited knowledge is available for their role in plants. Here, we characterized two diphosphoinositol pentakisphosphate kinase (PPIP5K) wheat homologs, TaVIH1 and TaVIH2 for their spatio-temporal expression and physiological functions. We demonstrated the presence of functional VIH-kinase domains through biochemical assays where high energy pyrophosphate forms (IP7/8) were generated. Our GUS-reporter assays in Arabidopsis, suggested the role of TaVIH2 in drought stress. Yeast two-hybrid screen of TaVIH2 by utilizing wheat library yielded multiple cell-wall related interacting partners. TaVIH2 overexpression in Arabidopsis provided growth advantage and drought tolerance. Further, transcriptomic studies of these overexpressing lines showed activation of genes encoding for abscisic acid metabolism, cell-wall biosynthesis and drought responsive element binding proteins. Biochemical analysis of their cell-wall components, confirmed enhanced accumulation of polysaccharides (arabinogalactan, cellulose and arabinoxylan) in transgenics. These results reveal novel function of VIH proteins in modulating cell wall homeostasis thereby providing drought tolerance.


2008 ◽  
Vol 190 (15) ◽  
pp. 5455-5463 ◽  
Author(s):  
Robert T. DeBoy ◽  
Emmanuel F. Mongodin ◽  
Derrick E. Fouts ◽  
Louise E. Tailford ◽  
Hoda Khouri ◽  
...  

ABSTRACT The plant cell wall, which consists of a highly complex array of interconnecting polysaccharides, is the most abundant source of organic carbon in the biosphere. Microorganisms that degrade the plant cell wall synthesize an extensive portfolio of hydrolytic enzymes that display highly complex molecular architectures. To unravel the intricate repertoire of plant cell wall-degrading enzymes synthesized by the saprophytic soil bacterium Cellvibrio japonicus, we sequenced and analyzed its genome, which predicts that the bacterium contains the complete repertoire of enzymes required to degrade plant cell wall and storage polysaccharides. Approximately one-third of these putative proteins (57) are predicted to contain carbohydrate binding modules derived from 13 of the 49 known families. Sequence analysis reveals approximately 130 predicted glycoside hydrolases that target the major structural and storage plant polysaccharides. In common with that of the colonic prokaryote Bacteroides thetaiotaomicron, the genome of C. japonicus is predicted to encode a large number of GH43 enzymes, suggesting that the extensive arabinose decorations appended to pectins and xylans may represent a major nutrient source, not just for intestinal bacteria but also for microorganisms that occupy terrestrial ecosystems. The results presented here predict that C. japonicus possesses an extensive range of glycoside hydrolases, lyases, and esterases. Most importantly, the genome of C. japonicus is remarkably similar to that of the gram-negative marine bacterium, Saccharophagus degradans 2-40T. Approximately 50% of the predicted C. japonicus plant-degradative apparatus appears to be shared with S. degradans, consistent with the utilization of plant-derived complex carbohydrates as a major substrate by both organisms.


Sign in / Sign up

Export Citation Format

Share Document