scholarly journals Antioxidant Activity and Toxicity of Fullerenols via Bioluminescence Signaling: Role of Oxygen Substituents

2019 ◽  
Vol 20 (9) ◽  
pp. 2324 ◽  
Author(s):  
Ekaterina Kovel ◽  
Anna Sachkova ◽  
Natalia Vnukova ◽  
Grigoriy Churilov ◽  
Elena Knyazeva ◽  
...  

Fullerenols are nanosized water-soluble polyhydroxylated derivatives of fullerenes, a specific allotropic form of carbon, bioactive compounds, and perspective basis for drug development. Our paper analyzes the antioxidant activity and toxicity of a series of fullerenols with different number of oxygen substituents. Two groups of fullerenols were under investigation: (1) C60Oy(OH)x, C60,70Oy(OH)x, where x+y = 24–28 and (2) C60,70Oy(OH)x, Fe0,5C60Oy(OH)x, Gd@C82Oy(OH)x, where x+y = 40–42. Bioluminescent cellular and enzymatic assays (luminous marine bacteria and their enzymatic reactions, respectively) were applied to monitor toxicity in the model fullerenol solutions and bioluminescence was applied as a signaling physiological parameter. The inhibiting concentrations of the fullerenols were determined, revealing the fullerenols’ toxic effects. Antioxidant fullerenol’ ability was studied in solutions of model oxidizer, 1,4-benzoquinone, and detoxification coefficients of general and oxidative types (DGT and DOxT) were calculated. All fullerenols produced toxic effect at high concentrations (>0.01 g L−1), while their antioxidant activity was demonstrated at low and ultralow concentrations (<0.001 g L−1). Quantitative toxic and antioxidant characteristics of the fullerenols (effective concentrations, concentration ranges, DGT, and DOxT) were found to depend on the number of oxygen substituents. Lower toxicity and higher antioxidant activity were determined in solutions of fullerenols with fewer oxygen substituents (x+y = 24–28). The differences in fullerenol properties were attributed to their catalytic activity due to reversible electron acceptance, radical trapping, and balance of reactive oxygen species in aqueous solutions. The results provide pharmaceutical sciences with a basis for selection of carbon nanoparticles with appropriate toxic and antioxidant characteristics. Based on the results, we recommend, to reduce the toxicity of prospective endohedral gadolinium-fullerenol preparations Gd@C82Oy(OH)x, decreasing the number of oxygen groups to x+y = 24–28. The potential of bioluminescence methods to compare toxic and antioxidant characteristics of carbon nanostructures were demonstrated.

2021 ◽  
Vol 22 (12) ◽  
pp. 6382
Author(s):  
Ekaterina S. Kovel ◽  
Arina G. Kicheeva ◽  
Natalia G. Vnukova ◽  
Grigory N. Churilov ◽  
Evsei A. Stepin ◽  
...  

Fullerene is a nanosized carbon structure with potential drug delivery applications. We studied the bioeffects of a water-soluble fullerene derivative, fullerenol, with 10-12 oxygen groups (F10-12); its structure was characterized by IR and XPS spectroscopy. A bioluminescent enzyme system was used to study toxic and antioxidant effects of F10-12 at the enzymatic level. Antioxidant characteristics of F10-12 were revealed in model solutions of organic and inorganic oxidizers. Low-concentration activation of bioluminescence was validated statistically in oxidizer solutions. Toxic and antioxidant characteristics of F10-12 were compared to those of homologous fullerenols with a higher number of oxygen groups:F24-28 and F40-42. No simple dependency was found between the toxic/antioxidant characteristics and the number of oxygen groups on the fullerene’s carbon cage. Lower toxicity and higher antioxidant activity of F24-28 were identified and presumptively attributed to its higher solubility. An active role of reactive oxygen species (ROS) in the bioeffects of F10-12 was demonstrated. Correlations between toxic/antioxidant characteristics of F10-12 and ROS content were evaluated. Toxic and antioxidant effects were related to the decrease in ROS content in the enzyme solutions. Our results reveal a complexity of ROS effects in the enzymatic assay system.


Author(s):  
Ekaterina Kovel ◽  
Anna Sachkova ◽  
Natalia Vnukova ◽  
Grigoriy Churilov ◽  
Elena Knyazeva ◽  
...  

Fullerenols are nanosized water-soluble polyhydroxylated derivatives of fullerenes, specific allotropic form of carbon, bioactive compounds and perspective pharmaceutical agents. We studied biological effects of a series of fullerenols. Antioxidant activity and toxicity of the fullerenols were compared using bioluminescence assays (cellular and enzymatic); a content of Reactive Oxygen Species in fullerenol solutions was determined using chemiluminescence luminol method. Two groups of fullerenols with different number of hydroxyl substituents were under investigation: (I) С60Оy(OH)x, С60,70Оy(OH)x, where х+у=24&ndash;28 and (II) С60,70Оy(OH)x, Fe0,5С60Оy(OH)x, where х+у=40&ndash;42. Toxicity of the fullerenols was evaluated using effective concentrations ЕС50. Fullerenol&rsquo; antioxidant activity was investigated in model solutions of organic toxicant of oxidative type, 1,4-benzoquinone. Detoxification coefficients were calculated to analyze and compare the antioxidant activity. Higher toxicity and lower antioxidant activity were demonstrated in the solutions of fullerenols with higher number of the oxygen substituents (х+у=40&ndash;42). The differences were concerned with fullerenol&rsquo; ability to disturb Reactive Oxygen Species balance in aqueous solutions. Toxic effect of the prospective endohedral metal-fullerenol with gadolinium atom involved, Gd@C82Oy(OH)x, where х+у=40&ndash;42, was evaluated and explained by a high number of oxygen groups


Author(s):  
Ekaterina Kovel ◽  
Anna Sachkova ◽  
Natalia Vnukova ◽  
Grigoriy Churilov ◽  
Elena Knyazeva ◽  
...  

Fullerenols are nanosized water-soluble polyhydroxylated derivatives of fullerenes, specific allotropic form of carbon, bioactive compounds and perspective pharmaceutical agents. We studied biological effects of a series of fullerenols. Antioxidant activity and toxicity of the fullerenols were compared using bioluminescence assays (cellular and enzymatic); a content of Reactive Oxygen Species in fullerenol solutions was determined using chemiluminescence luminol method. Two groups of fullerenols with different number of hydroxyl substituents were under investigation: (I) С60Оy(OH)x, С60,70Оy(OH)x, where х+у=24&ndash;28 and (II) С60,70Оy(OH)x, Fe0,5С60Оy(OH)x, where х+у=40&ndash;42. Toxicity of the fullerenols was evaluated using effective concentrations ЕС50. Fullerenol&rsquo; antioxidant activity was investigated in model solutions of organic toxicant of oxidative type, 1,4-benzoquinone. Detoxification coefficients were calculated to analyze and compare the antioxidant activity. Higher toxicity and lower antioxidant activity were demonstrated in the solutions of fullerenols with higher number of the oxygen substituents (х+у=40&ndash;42). The differences were concerned with fullerenol&rsquo; ability to disturb Reactive Oxygen Species balance in aqueous solutions. Toxic effect of the prospective endohedral metal-fullerenol with gadolinium atom involved, Gd@C82Oy(OH)x, where х+у=40&ndash;42, was evaluated and explained by a high number of oxygen groups


2020 ◽  
Vol 10 (2) ◽  
pp. 158-162 ◽  
Author(s):  
Humaira Yasmeen Gondal ◽  
Roshan Zamir ◽  
Muhammad Nisar ◽  
Muhammad Iqbal Choudhary

Background: The genus Verbascum is well documented for its antioxidant potential but Verbascum sinaiticum is comparatively less studied plant. The current study was carried out to search for antioxidant nutraceuticals from this species. Objective: To explore the antioxidant potential of Verbascum sinaiticum and to identify its active constituents. Methods: The methanolic extract of air-dried aerial part of the Verbascum sinaiticum was partitioned with hexane, chloroform and ethyl acetate. The water-soluble part of ethyl acetate afforded six phenylethanoid glycosides by repeated chromatography over Sephadex LH-20, silica gel and ODS columns. Antioxidant activity of solvent extracts and isolated constituents were evaluated by DPPH, ABTS and FRAP assays. Results: Six phenylethanoid glycosides was isolated and characterized as Verbascoside, Eukovoside, Martynoside, Jionoside D, Campneoside I and Campneoside II, from the most active fraction. Conclusion: Verbascum sinaiticum demonstrated prospective antioxidant activity. The watersoluble part of EtOAc (WSEAE) was found the most active extract whereas Verbascoside was identified as the most potent constituent. All isolated compounds exhibited significant antioxidant activity whereas their synergistic effect was found prominent in the parent fraction.


2014 ◽  
Vol 675-677 ◽  
pp. 1654-1657
Author(s):  
Xiao Li Zhou ◽  
Xu Chen ◽  
Ting Feng Hao ◽  
Yi Ming Zhou ◽  
Ying Xiao

This study was designed to evaluate the antioxidant activity of samples extracted from Jinhua ham by using such chemical assays as DPPH, scavenging hydroxyl free radical and ABTS. The results demonstrate that antioxidant capacity of the extracted sample is lower than oxidation capacity of Vc. The IC50 spot of samples ranges between 0.6 % and 2.5 % (mass fraction of solute).


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 212
Author(s):  
Yeimi Cecilia Vega-Ruiz ◽  
Corina Hayano-Kanashiro ◽  
Nohemí Gámez-Meza ◽  
Luis Angel Medina-Juárez

Jatropha species have been shown to be an important source of secondary metabolites with different biological effects. Jatropha cinerea (Ortega) Müll. Arg and Jatropha cordata (Ortega) Müll. Arg are distributed in the Northwestern region of Mexico, are adapted to extreme weather conditions and are widely used (stems, leaves, and sap) in traditional medicine. The aim of the present study was to carry out the phytochemical characterization and the evaluation of the antioxidant activity in methanolic extracts of stems and leaves from J. cinerea and J. cordata. The compounds present in the extracts of both species were characterized by ESI-IT-MS/MS and quantified by HPLC-DAD. The results showed that the stem extracts of both species are rich in phenolic acids, while the leaf extracts are rich in flavonoids. Some of the main compounds found were gallic acid, gentisic acid, 3,4-Dihydroxybenzoic acid, vitexin, isovitexin, and catechol. Both species showed high concentrations of phenols and total flavonoids and antioxidant activity. J. cordata showed the highest antioxidant capacity and the highest concentration of phenolic compounds. Overall, both Jatropha species are a natural source of antioxidant compounds with potential biotechnological uses.


2011 ◽  
Vol 286 (12) ◽  
pp. 10618-10627 ◽  
Author(s):  
Ekaterina N. Lyukmanova ◽  
Zakhar O. Shenkarev ◽  
Mikhail A. Shulepko ◽  
Konstantin S. Mineev ◽  
Dieter D'Hoedt ◽  
...  

Discovery of proteins expressed in the central nervous system sharing the three-finger structure with snake α-neurotoxins provoked much interest to their role in brain functions. Prototoxin LYNX1, having homology both to Ly6 proteins and three-finger neurotoxins, is the first identified member of this family membrane-tethered by a GPI anchor, which considerably complicates in vitro studies. We report for the first time the NMR spatial structure for the water-soluble domain of human LYNX1 lacking a GPI anchor (ws-LYNX1) and its concentration-dependent activity on nicotinic acetylcholine receptors (nAChRs). At 5–30 μm, ws-LYNX1 competed with 125I-α-bungarotoxin for binding to the acetylcholine-binding proteins (AChBPs) and to Torpedo nAChR. Exposure of Xenopus oocytes expressing α7 nAChRs to 1 μm ws-LYNX1 enhanced the response to acetylcholine, but no effect was detected on α4β2 and α3β2 nAChRs. Increasing ws-LYNX1 concentration to 10 μm caused a modest inhibition of these three nAChR subtypes. A common feature for ws-LYNX1 and LYNX1 is a decrease of nAChR sensitivity to high concentrations of acetylcholine. NMR and functional analysis both demonstrate that ws-LYNX1 is an appropriate model to shed light on the mechanism of LYNX1 action. Computer modeling, based on ws-LYNX1 NMR structure and AChBP x-ray structure, revealed a possible mode of ws-LYNX1 binding.


2007 ◽  
Vol 55 (1) ◽  
pp. 165-169 ◽  
Author(s):  
Masaaki Terashima ◽  
Izumi Nakatani ◽  
Ayako Harima ◽  
Sayaka Nakamura ◽  
Masami Shiiba

2020 ◽  
Vol 1 (4) ◽  
pp. 68-74
Author(s):  
A. A. Savina ◽  
◽  
A. A. Volnin ◽  
N. V. Bogolyubova ◽  
O. A. Voronina ◽  
...  

The effects of chitosan on various metabolic and digestive processes in the animal body are an important to study because of the production quality for animal nutrition, healthcare, etc. The major known changes in the biochemical parameters of the animal liquids (by chitosan usage as feed additive) are the following: ratio of volatile and fatty acids, content of fat, mineral composition, etc. The aim of this study was to evaluate the total amount of water-soluble antioxidants (TAWSA) of feed additives based on chitosan and high protein concentrate of microbiological synthesis and to assess the effect of these feed additives on TAWSA values of sheep blood serum by amperometric method. Firstly, the antioxidant activity of feed components based on chitosan or/and a high-protein microbiological synthesis concentrate was studied in this work. Second, the experiments are carried out on 6 fistula animals to confirm the results of laboratory studies. Third, the determination of the total antioxidant activity of sheep blood by using chitosan additives (as the feed components) by amperometric method was carried out. A particular difference in antioxidant activity of the control and experimental samples of the sheep blood was established for the first time.


2016 ◽  
Vol 16 (11) ◽  
pp. 7357-7371 ◽  
Author(s):  
Mi Tian ◽  
Huanbo Wang ◽  
Yang Chen ◽  
Fumo Yang ◽  
Xiaohua Zhang ◽  
...  

Abstract. Extremely severe haze weather events occurred in many cities in China, especially in the east part of the country, in January 2013. Comprehensive measurements including hourly concentrations of PM2.5 and its major chemical components (water-soluble inorganic ions, organic carbon (OC), and elemental carbon (EC)) and related gas-phase precursors were conducted via an online monitoring system in Suzhou, a medium-sized city in Jiangsu province, just east of Shanghai. PM2.5 (particulate matter with an aerodynamic diameter of 2.5 µm or less) frequently exceeded 150 µg m−3 on hazy days, with the maximum reaching 324 µg m−3 on 14 January 2013. Unfavorable weather conditions (high relative humidity (RH), and low rainfall, wind speed, and atmospheric pressure) were conducive to haze formation. High concentrations of secondary aerosol species (including SO42−, NO3−, NH4+, and SOC) and gaseous precursors were observed during the first two haze events, while elevated primary carbonaceous species emissions were found during the third haze period, pointing to different haze formation mechanisms. Organic matter (OM), (NH4)2SO4, and NH4NO3 were found to be the major contributors to visibility impairment. High concentrations of sulfate and nitrate might be explained by homogeneous gas-phase reactions under low RH conditions and by heterogeneous processes under relatively high RH conditions. Analysis of air mass trajectory clustering and potential source contribution function showed that aerosol pollution in the studied areas was mainly caused by local activities and surrounding sources transported from nearby cities.


Sign in / Sign up

Export Citation Format

Share Document