scholarly journals Enhanced Hepatogenic Differentiation of Human Wharton’s Jelly–Derived Mesenchymal Stem Cells by Using Three-Step Protocol

2019 ◽  
Vol 20 (12) ◽  
pp. 3016 ◽  
Author(s):  
Wachira Panta ◽  
Sumeth Imsoonthornruksa ◽  
Ton Yoisungnern ◽  
Sanong Suksaweang ◽  
Mariena Ketudat-Cairns ◽  
...  

Currently, human Wharton’s jelly-derived mesenchymal stem cells (hWJ-MSCs) are an attractive source of stem cells for cell-based therapy, owing to their ability to undergo self-renewal and differentiate into all mesodermal, some neuroectodermal, and endodermal progenies, including hepatocytes. Herein, this study aimed to investigate the effects of sodium butyrate (NaBu), an epigenetic regulator that directly inhibits histone deacetylase, on hepatic endodermal lineage differentiation of hWJ-MSCs. NaBu, at 1 mM, optimally promoted endodermal differentiation of hWJ-MSCs, along with epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) supplementation (EGF + bFGF + 1 mM NaBu). CXCR4, HNF3β, SOX17 (endodermal), and GATA6 (mesendodermal) mRNAs were also up-regulated (p < 0.001). Immunocytochemistry and a Western blot analysis of SOX17 and HNF3β confirmed that the EGF + bFGF + 1 mM NaBu condition was appropriately pre-treated with hWJ-MSCs before hepatogenic differentiation. Furthermore, the hepatogenic medium + NaBu pre-treatment up-regulated hepatoblast (AFP and HNF3β) and hepatic (CK18 and ALB) markers, and increased the proportion of mature hepatocyte functions, including G6P, C/EBPα, and CYP2B6 mRNAs, glycogen storage and urea secretion. The hepatogenic medium + NaBu in the pre-treatment step can induce hWJ-MSC differentiation toward endodermal, hepatoblastic, and hepatic lineages. Therefore, the hepatogenic medium + NaBu pre-treatment for differentiating hWJ-MSCs could represent an alternative protocol for cell-based therapy and drug screening in clinical applications.

Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 739
Author(s):  
Ewa Kruminis-Kaszkiel ◽  
Adam Osowski ◽  
Ewa Bejer-Oleńska ◽  
Mariusz Dziekoński ◽  
Joanna Wojtkiewicz

The transplantation of neural stem cells (NSCs) capable of regenerating to the cells of the central nervous system (CNS) is a promising strategy in the treatment of CNS diseases and injury. As previous studies have highlighted mesenchymal stem cells (MSCs) as a source of NSCs, this study aimed to develop a feasible, efficient, and reproducible method for the neural induction of MSCs isolated from Wharton’s jelly (hWJ-MSCs). We induced neural differentiation in a monolayer culture using epidermal growth factor, basic fibroblast growth factor, N2, and B27 supplements. This resulted in a homogenous population of proliferating cells that expressed certain neural markers at both the protein and mRNA levels. Flow cytometry and immunocytochemistry confirmed the expression of neural markers: nestin, sex-determining region Y (SRY) box 1 and 2 (SOX1 and SOX2), microtubule-associated protein 2 (MAP2), and glial fibrillary acidic protein (GFAP). The qRT-PCR analysis revealed significantly enhanced expression of nestin and MAP2 in differentiated cells. This study confirms that it is possible to generate NSCs-like cells from hWJ-MSCs in a 2D culture using a practical method. However, the therapeutic effectiveness of such differentiated cells should be extended to confirm the terminal differentiation ability and electrophysiological properties of neurons derived from them.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Hager Abouelnaga ◽  
Doaa El-Khateeb ◽  
Yasmine Moemen ◽  
Ashraf El-Fert ◽  
Mohamed Elgazzar ◽  
...  

Abstract Background Isolation of post-partum umbilical cord Wharton’s jelly stem cells has gained attention as an alternative source of the bone marrow. Because easy isolation, lack of ethical concerns, and the presence of both embryonic and adult stem cells have made them a valuable source for use in therapeutic applications and regenerative medicine. The study utilized a modified protocol using in-house human pooled cord blood serum for isolation and expansion of the mesenchymal stem cells obtained from the human umbilical cord Wharton’s jelly. Cell proliferation and population doubling time and tri-lineage differentiation were assessed, and the expressions of mesenchymal cell surface markers CD44, CD90, CD105, and CD34 were assessed by flow cytometry and RT-PCR. The genetic stability of the isolated cells was assessed by chromosomal karyotype. Results The isolated cells displayed fibroblastic-like morphology and tri-lineage differentiation into adipocyte, chondrocyte, and osteocyte. The isolated cells maintained the proliferative competence with a doubling time ranged from 38 to 42h and corresponded well with the standard positive and negative molecular markers (CD44+, CD90+, CD 105+, and CD34−). Cell senescence occurred at the later passage of the cells (P15) affecting, about 25% of the population. Metaphases spread of the cells showed normal diploid karyotypes, with typical chromosomal plates indicating genetic stability of the isolated cells. Conclusion The primary cultures exhibited success in isolating the umbilical cord Wharton’s jelly mesenchymal stem cells, which maintained their tri-lineage differentiation potential, phenotypes and karyotype characteristics on further passage and expansion.


2021 ◽  
Vol 50 (6) ◽  
pp. 1715-1726
Author(s):  
Jezamine Lim ◽  
Sue Ping Eng ◽  
Wei Yen Yeoh ◽  
Yik Wan Low ◽  
Nur Mohd Shafwan bin Jusoh ◽  
...  

Mesenchymal stem cells (MSCs) are multipotent progenitor cells that are reported to be immune-privileged and immune-evasive. MSCs are capable of differentiating into specific cell types for subsequent use in cell-based therapy. They express low levels of human leucocyte antigen (HLA)-ABC and no HLA-DR. Wharton’s jelly-derived MSCs (WJ-MSCs) were also found to express human leukocyte antigen G (HLA-G), which renders them immunosuppressive. This study aimed to determine whether cultured WJ-MSCs retain their immune-privileged and immune-evasive properties after cell differentiation, and whether these properties differ among MSCs derived from different anatomical segments of the umbilical cord. Umbilical cords of healthy pregnant mothers undergoing caesarean section were obtained and grouped by three anatomical segments: fetal, middle, and maternal segments. WJ-MSCs were isolated, culture-expanded, and differentiated into osteogenic cells. Expression of HLA-DR, HLA-ABC, and HLA-G were quantified using flow cytometry. Both undifferentiated and osteodifferentiated WJ-MSCs were subsequently co-cultured with allogeneic peripheral blood mononuclear cells with/without lipopolysaccharide (LPS) stimulation for five days. Lymphocyte proliferation assay was performed using carboxyfluorescein succinimidyl ester (CFSE) as a tracker. Our results showed no significant difference existed in the HLA profiles among WJ-MSCs from different segments and between WJ-MSCs with and without osteogenic differentiation. Mean levels for HLA-G, HLABC, and HLA-DR were 24.82±17.64, 52.50±18.41, and 1.00±1.68%, respectively. Stimulation with LPS and WJ-MSCs increased peripheral blooc mononuclear cells (PBMC) proliferation. However, PBMC proliferation was significantly lower when PBMCs were co-cultured with osteodifferentiated WJ-MSCs (p < .05; with LPS stimulation and p < .001 without LPS stimulation) than when they were co-cultured with undifferentiated WJ-MSCs. These findings suggest that cultured WJ-MSCs stimulate lymphocyte proliferation and are not immune-privileged. Osteodifferentiated WJ-MSCs reduced the immunogenicity of WJ-MSCs, and this reduction in PBMC proliferation was even more pronounced in the presence of LPS (p < .05). In conclusion, cultured WJ-MSCs are not immune-privileged. Osteodifferentiated WJ-MSCs are less immunogenic than undifferentiated WJ-MSCs, in which case hypoimmunogenicity is more profound under LPS-stimulated conditions.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 717
Author(s):  
Ewelina Tomecka ◽  
Wioletta Lech ◽  
Marzena Zychowicz ◽  
Anna Sarnowska ◽  
Magdalena Murzyn ◽  
...  

To optimise the culture conditions for human Wharton’s jelly-derived mesenchymal stem cells (hWJ-MSCs) intended for clinical use, we investigated ten different properties of these cells cultured under 21% (atmospheric) and 5% (physiological normoxia) oxygen concentrations. The obtained results indicate that 5% O2 has beneficial effects on the proliferation rate, clonogenicity, and slowdown of senescence of hWJ-MSCs; however, the oxygen level did not have an influence on the cell morphology, immunophenotype, or neuroprotective effect of the hWJ-MSCs. Nonetheless, the potential to differentiate into adipocytes, osteocytes, and chondrocytes was comparable under both oxygen conditions. However, spontaneous differentiation of hWJ-MSCs into neuronal lineages was observed and enhanced under atmospheric oxygen conditions. The cells relied more on mitochondrial respiration than glycolysis, regardless of the oxygen conditions. Based on these results, we can conclude that hWJ-MSCs could be effectively cultured and prepared under both oxygen conditions for cell-based therapy. However, the 5% oxygen level seemed to create a more balanced and appropriate environment for hWJ-MSCs.


2019 ◽  
Vol 20 (18) ◽  
pp. 4632 ◽  
Author(s):  
Musiał-Wysocka ◽  
Kot ◽  
Sułkowski ◽  
Majka

In recent years, mesenchymal stem cells (MSCs) have emerged as a promising therapeutic modality in regenerative medicine. They hold great promise for treating civilization-wide diseases, including cardiovascular diseases, such as acute myocardial infarction and critical limb ischemia. MSCs isolated from Wharton’s jelly (WJ-MSCs) may be utilized in both cell-based therapy and vascular graft engineering to restore vascular function, thereby providing therapeutic benefits for patients. The efficacy of WJ-MSCs lies in their multipotent differentiation ability toward vascular smooth muscle cells, endothelial cells and other cell types, as well as their capacity to secrete various trophic factors, which are potent in promoting angiogenesis, inhibiting apoptosis and modulating immunoreaction. Ischemic limb disease is caused by insufficient nutrient and oxygen supplies resulting from damaged peripheral arteries. The lack of nutrients and oxygen causes severe tissue damage in the limb, thereby resulting in severe morbidities and mortality. The therapeutic effects of the conventional treatments are still not sufficient. Cell transplantations in small animal model (mice) are vital for deciphering the mechanisms of MSCs’ action in muscle regeneration. The stimulation of angiogenesis is a promising strategy for the treatment of ischemic limbs, restoring blood supply for the ischemic region. In the present study, we focus on the therapeutic properties of the human WJ-MSCs derived product, Cardio. We investigated the role of CardioCell in promoting angiogenesis and relieving hindlimb ischemia. Our results confirm the healing effect of CardioCell and strongly support the use of the WJ-MSCs in regenerative medicine.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Patcharee Prasajak ◽  
Wilairat Leeanansaksiri

The shortage of donor livers and hepatocytes is a major limitation of liver transplantation. Thus, generation of hepatocyte-like cells may provide alternative choice for therapeutic applications. In this study, we developed a new method to establish hepatocytes from Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs) cell lines named WJMSCs-SUT1 and WJMSCs-SUT2 under hypoxic condition. This new method could rapidly drive both WJ-MSCs cell lines into hepatic lineage within 18 days. The achievement of hepatogenic differentiation was confirmed by the characterization of both phenotypes and functions. More than 80% MSCs-derived hepatocyte-like cells (MSCDHCs) achieved functional hepatocytes including hepatic marker expressions both at gene and protein levels, glycogen storage, low-density lipoprotein uptake, urea production, and albumin secretion. This study highlights the establishment of new hepatogenic induction protocol under hypoxic condition in order to mimic hypoxic microenvironment in typical cell physiology. In conclusion, we present a simple, high-efficiency, and time saving protocol for the generation of functional hepatocyte-like cells from WJ-MSCs in hypoxic condition. The achievement of this method may overcome the limitation of donor hepatocytes and provides a new avenue for therapeutic value in cell-based therapy for life-threatening liver diseases, regenerative medicine, toxicity testing for pharmacological drug screening, and other medical related applications.


Sign in / Sign up

Export Citation Format

Share Document