scholarly journals Bifidobacterium and Lactobacillus Composition at Species Level and Gut Microbiota Diversity in Infants before 6 Weeks

2019 ◽  
Vol 20 (13) ◽  
pp. 3306 ◽  
Author(s):  
Bo Yang ◽  
Yingqi Chen ◽  
Catherine Stanton ◽  
R. Paul Ross ◽  
Yuan-Kun Lee ◽  
...  

Our objective was to investigate the effects of different delivery and feeding modes on the gut microbiota composition of early infants with special emphasis on Bifidobacterium and Lactobacillus profiles at species level. 16S rRNA V3-V4 regions, bifidobacterial, and lactobacilli groEL genes from infant feces were sequenced by Illumina MiSeq. Gut microbiota abundance was significantly different, where standard vaginally delivered (SVD) and breast-fed (BF) groups were higher in comparison with caesarean section (CS), milk-powder-fed (MPF), and mixed-fed (MF) groups. The genus unclassified Enterobacteriaceae was dominant, followed by Bifidobacterium, which was highly abundant in SVD and BF groups. The dominant Bifidobacterium species in all groups were B. longum subsp. longum, B. longum subsp. infantis and B. animalis subsp. lactis. B. dentium and the diversity of Bifidobacterium in SVD and BF groups were significantly higher. For Lactobacillus profiles, L. rhamnosus and L. gasseri were dominant among all the groups, while Lactobacillus species in CS and MPF groups were more diverse. Functional predictions showed significant differences between delivery mode and feeding groups, such as phosphotransferase system as well as taurine and hypotaurine metabolism. In early infants with different delivery and feeding methods, gut microbiota—particularly bifidobacteria and lactobacilli communities—showed significant differences, with strong implications for physiological functions.

2020 ◽  
Author(s):  
Katarina Butorac ◽  
Martina Banic ◽  
Jasna Novak ◽  
Andreja Leboš Pavunc ◽  
Ksenija Uroic ◽  
...  

Abstract Background: The influence of an S-layer-carrying strain Lactobacillus brevis SF9B and a plantaricin-producing strain Lactobacillus plantarum SF9C on the gut microbiota composition was evaluated in the rats. Considering the probiotic potential of Lb. brevis SF9B, this study aimed to examine the antibacterial activity of Lb. plantarum SF9C and potential for their in vivo colonisation, which could be the basis for the investigation of their synergistic functionality. Results: A plantaricin-encoding cluster was identified in Lb. plantarum SF9C, a strain which efficiently inhibited the growth of Listeria monocytogenes ATCC®19111™ and Staphylococcus aureus 3048. Contrary to the plantaricin-producing SF9C strain, the S-layer-carrying SF9B strain excluded Escherichia coli 3014 and Salmonella enterica serovar Typhimurium FP1 from adhesion to Caco-2 cells. Finally, DGGE analysis of the V2-V3 region of the 16S rRNA gene confirmed the transit of two selected lactobacilli through the gastrointestinal tract (GIT). Microbiome profiling via the Illumina MiSeq platform revealed the prevalence of Lactobacillus spp. in the gut microbiota of rats suggesting their colonisation potential in GIT.Conclusion: The combined application of Lb. plantarum SF9C and Lb. brevis SF9B could influence the intestinal microbiota composition, which is reflected through the increased abundance of Lactobacillus genus, but also through altered abundances of other bacterial genera, either in the model of healthy or aberrant microbiota of rats. The obtained results contributed to the functional aspects of SF9C and SF9B strains which could be incorporated in the probiotic-containing functional foods and therefore have a beneficial influence on the gut microbiota composition.


Nutrients ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2707 ◽  
Author(s):  
Silvia Pisanu ◽  
Vanessa Palmas ◽  
Veronica Madau ◽  
Emanuela Casula ◽  
Andrea Deledda ◽  
...  

Although it is known that the gut microbiota (GM) can be modulated by diet, the efficacy of specific dietary interventions in determining its composition and diversity in obese patients remains to be ascertained. The present work aims to evaluate the impact of a moderately hypocaloric Mediterranean diet on the GM of obese and overweight patients (OB). The GM of 23 OB patients (F/M = 20/3) was compared before (T0) and after 3 months (T3) of nutritional intervention (NI). Fecal samples were analyzed by Illumina MiSeq sequencing of the 16S rRNA gene. At baseline, GM characterization confirmed typical obesity-associated dysbiosis. After 3 months of NI, patients presented a statistically significant reduction in body weight and fat mass, along with changes in the relative abundance of many microbial patterns. In fact, an increase in the abundance of several Bacteroidetes taxa (i.e., Sphingobacteriaceae, Sphingobacterium, Bacteroides spp., Prevotella stercorea) and a depletion of many Firmicutes taxa (i.e., Lachnospiraceae members, Ruminococcaceae and Ruminococcus, Veillonellaceae, Catenibacterium, Megamonas) were observed. In addition, the phylum Proteobacteria showed an increased abundance, while the genus Sutterella, within the same phylum, decreased after the intervention. Metabolic pathways, predicted by bioinformatic analyses, showed a decrease in membrane transport and cell motility after NI. The present study extends our knowledge of the GM profiles in OB, highlighting the potential benefit of moderate caloric restriction in counteracting the gut dysbiosis.


Author(s):  
Silvia Pisanu ◽  
Vanessa Palmas ◽  
Veronica Madau ◽  
Emanuela Casula ◽  
Andrea Deledda ◽  
...  

Although it is known that the gut microbiota (GM) can be modulated by diet, the efficacy of specific dietary interventions in determining its composition and diversity in obese patients remains to be ascertained. The present work aims to evaluate the impact of a moderately hypocaloric Mediterranean diet on the GM of obese and overweight patients (OB). The GM of 23 OB patients (F/M= 20/3) was compared before (T0) and after 3 months (T3) of the nutritional intervention (NI). Fecal samples were analyzed by Illumina MiSeq sequencing of the 16S rRNA gene. At baseline, the GM characterization confirmed the typical obesity-associated dysbiosis. After 3 months of NI, patients presented a statistically significant reduction of the body weight and fat mass, along with changes in the relative abundance of many microbial patterns. In fact, we observed an increased abundance in several Bacteroidetes taxa (i.e. Sphingobacteriaceae, Sphingobacterium, Bacteroides spp., Prevotella stercorea) and depletion of many Firmicutes taxa (i.e. Lachnospiraceae members, Ruminococcaceae and Ruminococcus, Veillonellaceae, Catenibacterium, Megamonas). In addition, the phylum Proteobacteria showed an increased abundance, while the genus Sutterella, within the same phylum, decreased after the intervention. Metabolic pathways, predicted by bioinformatic analyses, showed a decrease in membrane transport and cell motility after NI. The present study extends our knowledge of the GM profiles in OB, highlighting the potential benefit of a moderate caloric restriction in counteracting the gut dysbiosis.


2019 ◽  
Vol 74 (2) ◽  
pp. 132-139 ◽  
Author(s):  
Shohei Akagawa ◽  
Shoji Tsuji ◽  
Chikushi Onuma ◽  
Yuko Akagawa ◽  
Tadashi Yamaguchi ◽  
...  

Background/Aims: The mode of delivery (vaginal or cesarean section) and feeding type (breastfeeding or formula feeding) of neonates are considered the most influential factors in the development of gut microbiota. Objectives: This study investigated the effect of prebiotic-rich breast milk on overcoming gut microbiota dysbiosis. Method: Stool samples from 36 healthy Japanese neonates were obtained at 4 days and 1 month of age, and divided into 4 groups based on mode of delivery and feeding type. The gut microbiota composition and bacterial diversity were assessed using 16S rRNA sequencing. Results: At 4 days old, vaginally delivered neonates had a significantly higher diversity of bacteria than those born by cesarean section. Bacteroidales and Enterobacteriales were overrepresented in vaginally delivered neonates (p = 0.0031 and p = 0.011), while Bacillales and Lactobacillales were overrepresented in caesarean section delivered neonates (p = 0.012 and p = 0.0016). However, there was little difference in bacterial diversity and bacterial relative abundance at 1 month of age between groups. Conclusions: Cesarean section delivery appeared to reduce the diversity of neonate gut microbiota, resulting in dysbiosis, but this improved to the equivalent level seen in vaginally delivered infants by 1 month of age. Breastfeeding, even for short periods, may therefore improve neonate gut dysbiosis.


Author(s):  
Henni Hiltunen ◽  
Maria Carmen Collado ◽  
Helena Ollila ◽  
Terhi Kolari ◽  
Satu Tölkkö ◽  
...  

Abstract Background Aberrant gut microbiota composition in preterm neonates is linked to adverse health consequences. Little is known about the impact of perinatal factors or maternal gut microbiota on initial preterm gut colonization. Methods Fecal samples were collected from 55 preterm neonates (<35 gestational weeks), 51 mothers, and 25 full-term neonates during the first 3–4 postpartum days. Gut microbiota composition was assessed using 16S ribosomal RNA gene sequencing. Results Preterm neonates exhibited significantly lower gut microbiota alpha diversity and distinct beta diversity clustering compared to term neonates. Spontaneous preterm birth was associated with distinct initial gut microbiota beta diversity as compared to iatrogenic delivery. Gestational age or delivery mode had no impact on the preterm gut microbiota composition. The cause of preterm delivery was also reflected in the maternal gut microbiota composition. The contribution of maternal gut microbiota to initial preterm gut colonization was more pronounced after spontaneous delivery than iatrogenic delivery and not dependent on delivery mode. Conclusions The initial preterm gut microbiota is distinct from term microbiota. Spontaneous preterm birth is reflected in the early neonatal and maternal gut microbiota. Transmission of gut microbes from mother to neonate is determined by spontaneous preterm delivery, but not by mode of birth. Impact The initial gut microbiota in preterm neonates is distinct from those born full term. Spontaneous preterm birth is associated with changes in the gut microbiota composition of both preterm neonates and their mothers. The contribution of the maternal gut microbiota to initial neonatal gut colonization was more pronounced after spontaneous preterm delivery as compared to iatrogenic preterm delivery and not dependent on delivery mode. Our study provides new evidence regarding the early gut colonization patterns in preterm infants. Altered preterm gut microbiota has been linked to adverse health consequences and may provide a target for early intervention.


2021 ◽  
Vol 9 (9) ◽  
pp. 1995
Author(s):  
Mengfan Ding ◽  
Bo Yang ◽  
Wei Wei Thwe Khine ◽  
Yuan-Kun Lee ◽  
Endang Sutriswati Rahayu ◽  
...  

The infant gut microbiota plays a critical role in early life growth and derives mainly from maternal gut and breast milk. This study aimed to analyze the differences in the gut microbiota, namely Bifidobacterium and Lactobacillus communities at species level among breast milk as well as maternal and infant feces at different time points after delivery. Fifty-one mother–infant pairs from Indonesia were recruited, and the breast milk and maternal and infant feces were collected and analyzed by high throughput sequencing (16S rRNA, Bifidobacterium groEL and Lactobacillus groEL genes). PCoA results showed bacterial composition was different among breast milk and maternal and infant feces within the first two years. The abundance of Bifidobacterium and Bacteroides were significantly higher in infant feces compared to their maternal feces from birth to two years of age, and maternal breast milk within six months after birth (p < 0.05), whereas the abundance of Blautia, Prevotella, and Faecalibacterium was higher in maternal feces compared to that in breast milk within six months and infant feces within one year after birth, respectively (p < 0.05). The relative abundances of Bacteroides and Lactobacillus was higher and lower in infant feces compared to that in maternal feces only between one and two years of age, respectively (p < 0.05). For Bifidobacterium community at species level, B. adolescentis, B. ruminantium, B. longum subsp. infantis, B. bifidum, and B. pseudolongum were identified in all samples. However, the profile of Bifidobacterium was different between maternal and infant feces at different ages. The relative abundances of B. adolescentis and B. ruminantium were higher in maternal feces compared to those in infant feces from birth to one year of age (p < 0.05), while the relative abundances of B. longum subsp. infantis and B. bifidum were higher in infant feces compared to those in maternal feces beyond three months, and the relative abundance of B. pseudolongum was only higher in infant feces between three and six months (p < 0.05). For Lactobacillus community, L. paragasseri showed higher relative abundance in infant feces when the infant was younger than one year of age (p < 0.05). This study showed bacterial composition at the genus level and Bifidobacterium and Lactobacillus communities at the species level were stage specific in maternal breast milk as well as and maternal and infant feces.


2021 ◽  
Vol 9 (9) ◽  
pp. 1867
Author(s):  
Silvia Saturio ◽  
Marta Suárez ◽  
Leonardo Mancabelli ◽  
Nuria Fernández ◽  
Laura Mantecón ◽  
...  

Antibiotics are important disruptors of the intestinal microbiota establishment, linked to immune and metabolic alterations. The intrapartum antibiotics prophylaxis (IAP) is a common clinical practice that is present in more than 30% of labours, and is known to negatively affect the gut microbiota composition. However, little is known about how it affects to Bifidobacterium (sub)species level, which is one of the most important intestinal microbial genera early in life. This study presents qualitative and quantitative analyses of the bifidobacterial (sub)species populations in faecal samples, collected at 2, 10, 30 and 90 days of life, from 43 healthy full-term babies, sixteen of them delivered after IAP use. This study uses both 16S rRNA–23S rRNA internal transcribed spacer (ITS) region sequencing and q-PCR techniques for the analyses of the relative proportions and absolute levels, respectively, of the bifidobacterial populations. Our results show that the bifidobacterial populations establishment is affected by the IAP at both quantitative and qualitative levels. This practice can promote higher bifidobacterial diversity and several changes at a compositional level. This study underlines specific targets for developing gut microbiota-based products for favouring a proper bifidobacterial microbiota development when IAP is required.


2020 ◽  
Author(s):  
Katarina Butorac ◽  
Martina Banic ◽  
Jasna Novak ◽  
Andreja Leboš Pavunc ◽  
Ksenija Uroic ◽  
...  

Abstract Background: The influence of an S-layer carrying Lactobacillus brevis SF9B and plantaricin-producing Lactobacillus plantarum SF9C on the gut microbiota composition was evaluated in the rats. Considering the probiotic potential of Lb. brevis SF9B, this study aimed to examine the antimicrobial activity of Lb. plantarum SF9C and potential for their in vivo colonization, which could be the basis for the investigation of their synergistic functionality. Results: We identified plantaricin encoding cluster in Lb. plantarum SF9C, a strain which efficiently inhibited Listeria monocytogenes ATCC®19111™ and Staphylococcus aureus 3048. Contrary to a plantaricin-producing SF9C strain S-layer carrying SF9B strain excluded Escherichia coli 3014 and Salmonella enterica serovar Typhimurium FP1 from Caco-2 cells. DGGE analysis of the V2-V3 region of the 16S rRNA gene confirmed the transit of the two selected lactobacilli through the gastrointestinal tract. Microbiome profiling via the Illumina MiSeq platform revealed the prevalence of Lactobacillus spp. in the gut microbiota of rats suggesting their colonization potential in GIT.Conclusion: The combined application of the two strains could influence intestinal microbiota composition, which is reflected through the increased abundance of Lactobacillus genus, but also along with the abundances of other bacterial genera, either in the model of health or aberrant microbiota. Obtained results contribute to the functional aspect of SF9C and SF9B strains which could be incorporated in the probiotic-containing functional foods to beneficially influence gut microbiota composition.


2020 ◽  
Vol 12 (569) ◽  
pp. eaax9929 ◽  
Author(s):  
Jakob Stokholm ◽  
Jonathan Thorsen ◽  
Martin J. Blaser ◽  
Morten A. Rasmussen ◽  
Mathis Hjelmsø ◽  
...  

There have been reports of associations between cesarean section delivery and the risk of childhood asthma, potentially mediated through changes in the gut microbiota. We followed 700 children in the Copenhagen Prospective Studies on Asthma in Childhood2010 (COPSAC2010) cohort prospectively from birth. We examined the effects of cesarean section delivery on gut microbial composition by 16S rRNA gene amplicon sequencing during the first year of life. We then explored whether gut microbial perturbations due to delivery mode were associated with a risk of developing asthma in the first 6 years of life. Delivery by cesarean section was accompanied by marked changes in gut microbiota composition at one week and one month of age, but by one year of age only minor differences persisted compared to vaginal delivery. Increased asthma risk was found in children born by cesarean section only if their gut microbiota composition at 1 year of age still retained a cesarean section microbial signature, suggesting that appropriate maturation of the gut microbiota could mitigate against the increased asthma risk associated with gut microbial changes due to cesarean section delivery.


Sign in / Sign up

Export Citation Format

Share Document