scholarly journals Effect of Intrapartum Antibiotics Prophylaxis on the Bifidobacterial Establishment within the Neonatal Gut

2021 ◽  
Vol 9 (9) ◽  
pp. 1867
Author(s):  
Silvia Saturio ◽  
Marta Suárez ◽  
Leonardo Mancabelli ◽  
Nuria Fernández ◽  
Laura Mantecón ◽  
...  

Antibiotics are important disruptors of the intestinal microbiota establishment, linked to immune and metabolic alterations. The intrapartum antibiotics prophylaxis (IAP) is a common clinical practice that is present in more than 30% of labours, and is known to negatively affect the gut microbiota composition. However, little is known about how it affects to Bifidobacterium (sub)species level, which is one of the most important intestinal microbial genera early in life. This study presents qualitative and quantitative analyses of the bifidobacterial (sub)species populations in faecal samples, collected at 2, 10, 30 and 90 days of life, from 43 healthy full-term babies, sixteen of them delivered after IAP use. This study uses both 16S rRNA–23S rRNA internal transcribed spacer (ITS) region sequencing and q-PCR techniques for the analyses of the relative proportions and absolute levels, respectively, of the bifidobacterial populations. Our results show that the bifidobacterial populations establishment is affected by the IAP at both quantitative and qualitative levels. This practice can promote higher bifidobacterial diversity and several changes at a compositional level. This study underlines specific targets for developing gut microbiota-based products for favouring a proper bifidobacterial microbiota development when IAP is required.

2021 ◽  
Vol 22 (7) ◽  
pp. 3382
Author(s):  
Silvia Saturio ◽  
Alicja M. Nogacka ◽  
Marta Suárez ◽  
Nuria Fernández ◽  
Laura Mantecón ◽  
...  

The establishment of the gut microbiota poses implications for short and long-term health. Bifidobacterium is an important taxon in early life, being one of the most abundant genera in the infant intestinal microbiota and carrying out key functions for maintaining host-homeostasis. Recent metagenomic studies have shown that different factors, such as gestational age, delivery mode, or feeding habits, affect the gut microbiota establishment at high phylogenetic levels. However, their impact on the specific bifidobacterial populations is not yet well understood. Here we studied the impact of these factors on the different Bifidobacterium species and subspecies at both the quantitative and qualitative levels. Fecal samples were taken from 85 neonates at 2, 10, 30, 90 days of life, and the relative proportions of the different bifidobacterial populations were assessed by 16S rRNA–23S rRNA internal transcribed spacer (ITS) region sequencing. Absolute levels of the main species were determined by q-PCR. Our results showed that the bifidobacterial population establishment is affected by gestational age, delivery mode, and infant feeding, as it is evidenced by qualitative and quantitative changes. These data underline the need for understanding the impact of perinatal factors on the gut microbiota also at low taxonomic levels, especially in the case of relevant microbial populations such as Bifidobacterium. The data obtained provide indications for the selection of the species best suited for the development of bifidobacteria-based products for different groups of neonates and will help to develop rational strategies for favoring a healthy early microbiota development when this process is challenged.


2017 ◽  
Vol 117 (7) ◽  
pp. 964-978 ◽  
Author(s):  
Ann-Sofie R. Poulsen ◽  
Nadieh de Jonge ◽  
Sugiharto Sugiharto ◽  
Jeppe L. Nielsen ◽  
Charlotte Lauridsen ◽  
...  

AbstractThe aim of this study was to characterise the gut microbiota composition of piglets fed bovine colostrum (BC), milk replacer (MR) or sow milk (SM) in the post-weaning period. Piglets (n36), 23-d old, were randomly allocated to the three diets. Faecal samples were collected at 23, 25, 27 and 30 d of age. Digesta from the stomach, ileum, caecum and mid-colon was collected at 30 d of age. Bacterial DNA from all samples was subjected to amplicon sequencing of the 16S rRNA gene. Bacterial enumerations by culture and SCFA analysis were conducted as well. BC-piglets had the highest abundance ofLactococcusin the stomach (P<0·0001) and ileal (P<0·0001) digesta, whereas SM-piglets had the highest abundance ofLactobacillusin the stomach digesta (P<0·0001). MR-piglets had a high abundance of Enterobacteriaceae in the ileal digesta (P<0·0001) and a higher number of haemolytic bacteria in ileal (P=0·0002) and mid-colon (P=0·001) digesta than SM-piglets. BC-piglets showed the highest colonic concentration of iso-butyric and iso-valeric acid (P=0·02). Sequencing and culture showed that MR-piglets were colonised by a higher number of Enterobacteriaceae, whereas the gut microbiota of BC-piglets was characterised by a change in lactic acid bacteria genera when compared with SM-piglets. We conclude that especially the ileal microbiota of BC-piglets had a closer resemblance to that of SM-piglets in regard to the abundance of potential enteric pathogens than did MR-piglets. The results indicate that BC may be a useful substitute for regular milk replacers, and as a feeding supplement in the immediate post-weaning period.


Nutrients ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3408
Author(s):  
Samar Y. Ahmad ◽  
James Friel ◽  
Dylan Mackay

Non-nutritive artificial sweeteners (NNSs) may have the ability to change the gut microbiota, which could potentially alter glucose metabolism. This study aimed to determine the effect of sucralose and aspartame consumption on gut microbiota composition using realistic doses of NNSs. Seventeen healthy participants between the ages of 18 and 45 years who had a body mass index (BMI) of 20–25 were selected. They undertook two 14-day treatment periods separated by a four-week washout period. The sweeteners consumed by each participant consisted of a standardized dose of 14% (0.425 g) of the acceptable daily intake (ADI) for aspartame and 20% (0.136 g) of the ADI for sucralose. Faecal samples collected before and after treatments were analysed for microbiome and short-chain fatty acids (SCFAs). There were no differences in the median relative proportions of the most abundant bacterial taxa (family and genus) before and after treatments with both NNSs. The microbiota community structure also did not show any obvious differences. There were no differences in faecal SCFAs following the consumption of the NNSs. These findings suggest that daily repeated consumption of pure aspartame or sucralose in doses reflective of typical high consumption have minimal effect on gut microbiota composition or SCFA production.


BMC Surgery ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Masaki Maekawa ◽  
Kenji Yoshitani ◽  
Musashi Yahagi ◽  
Takashi Asahara ◽  
Yoshiyuki Shishido ◽  
...  

Abstract Background Delirium after cardiac surgery affects mortality, but the mechanism remains unclear. Previous studies have reported gut microbiota are associated with brain activity. Systemic inflammation and antibiotics can damage the gut microbiota after cardiac surgery. We aimed to investigate changes in the gut microbiota and the association between the gut microbiota and delirium after cardiac surgery. Methods Twenty-one patients who underwent cardiac surgery were enrolled. Microbiota counts and fecal organic acid concentrations were measured in fecal samples harvested before surgery, just after surgery, and before discharge. To quantify the microbiota, we extracted total RNA fractions and examined gut microbiota composition using 16S and 23S rRNA-targeted quantitative-reverse Transcription-PCR. Postoperative delirium, insomnia, and pseudopsia were assessed for 1 week. Postoperative total bacterial counts changed significantly from 10.2 ± 0.2 log10 cells/g of feces to 9.8 ± 0.5 in the first postoperative samples (p = 0.003) and 10.0 ± 0.4 in the samples before discharge (p = 0.039). Fecal pH was 6.9 ± 0.6 before surgery and 7.4 ± 0.7 in the first postoperative samples (p = 0.001). Postoperative Staphylococcus and Pseudomonas counts were significantly higher in patients with postoperative pseudopsia than in patients without pseudopsia (3.2 ± 1.3 vs. 5.4 ± 0.9; p = 0.012 and 1.7 ± 0.8 vs. 4.6 ± 2.7; p = 0.001). Conclusions Total bacterial counts were significantly lower after surgery and until discharge. Fecal pH was significantly higher than preoperative levels. Staphylococcus and Pseudomonas counts were significantly higher in patients with postoperative pseudopsia.


2020 ◽  
Author(s):  
Masaki Maekawa ◽  
Kenji Yoshitani ◽  
Musashi Yahagi ◽  
Takashi Asahara ◽  
Yoshiyuki Shishido ◽  
...  

Abstract Background: Delirium after cardiac surgery affects mortality, but the mechanism remains unclear. Previous studies have reported gut microbiota are associated with brain activity. Systemic inflammation and antibiotics can damage the gut microbiota after cardiac surgery. We aimed to investigate changes in the gut microbiota and the association between the gut microbiota and delirium after cardiac surgery.Methods: Twenty-one patients who underwent cardiac surgery were enrolled. Microbiota counts and fecal organic acid concentrations were measured in fecal samples harvested before surgery, just after surgery, and before discharge. To quantify the microbiota, we extracted total RNA fractions and examined gut microbiota composition using 16S and 23S rRNA-targeted quantitative-reverse Transcription-PCR. Postoperative delirium, insomnia, and pseudopsia were assessed for 1 week. Postoperative total bacterial counts changed significantly from 10.2±0.2 log10 cells/g of feces to 9.8±0.5 in the first postoperative samples (p=0.003) and 10.0±0.4 in the samples before discharge (p=0.039). Fecal pH was 6.9±0.6 before surgery and 7.4±0.7 in the first postoperative samples (p=0.001). Postoperative Staphylococcus and Pseudomonas counts were significantly higher in patients with postoperative pseudopsia than in patients without pseudopsia (3.2±1.3 vs. 5.4±0.9; p=0.012 and 1.7±0.8 vs. 4.6±2.7; p=0.001).Conclusions: Total bacterial counts were significantly lower after surgery and until discharge. Fecal pH was significantly higher than preoperative levels. Staphylococcus and Pseudomonas counts were significantly higher in patients with postoperative pseudopsia.


2021 ◽  
Author(s):  
Tsubasa Matsuoka ◽  
Koji Hosomi ◽  
Jonguk Park ◽  
Yuka Goto ◽  
Mao Nishimura ◽  
...  

Objective: Barley contains abundant soluble β –glucan fibres, which have established health benefits. In addition, the health benefits conferred by the gut microbiota have attracted considerable interest. However, few studies have focused on the barley intake and microbiota of the Japanese population. In this study, we aimed to identify the relationship between the barley consumption and gut microbiota composition of the Japanese population. Research Methods & Procedures: A total of 236 participants were recruited in Japan, and 94 participants with no complication of diabetes, hypertension, and dyslipidemia were selected for the study. We analysed faecal samples from the participants, their medical check –up results, and responses to questionnaires about dietary habits. The participants were grouped according to their median barley intake. Then, we assessed the relative abundance of 50 microbial genera throughout the group and selected 20 that differed at P < 0.1 (Mann–Whitney U –test). We also analysed the networks and clustering of the 20 selected genera. Results: According to their relative abundance, Bifidobacterium, Anaerostipes, and Butyricicoccus were candidate characteristic microbiota of the group that consumed large amounts of barley (P < 0.05). Furthermore, network and cluster analyses revealed that barley directly correlated with Bifidobacterium and Butyricicoccus. Conclusions: Barley consumption generates changes in the intestinal microbiota of the Japanese population. We found that Bifidobacterium, Anaerostipes, and Butyricicoccus abundance was positively associated with barley consumption. This study showed that barley is important for gut microbiota and relates to Japanese traditional food like natto.


2020 ◽  
Author(s):  
Masaki Maekawa ◽  
Kenji Yoshitani ◽  
Musashi Yahagi ◽  
Takashi Asahara ◽  
Yoshiyuki Shishido ◽  
...  

Abstract Background Delirium after cardiac surgery affects mortality, but the mechanism remains unclear. Previous studies have reported gut microbiota are associated with brain activity. Systemic inflammation and antibiotics can damage the gut microbiota after cardiac surgery. We aimed to investigate changes in the gut microbiota and the association between the gut microbiota and delirium after cardiac surgery. Methods Twenty-one patients who underwent cardiac surgery were enrolled. Microbiota counts and fecal organic acid concentrations were measured in fecal samples harvested before surgery, just after surgery, and before discharge. To quantify the microbiota, we extracted total RNA fractions and examined gut microbiota composition using 16S and 23S rRNA-targeted quantitative-reverse Transcription-PCR. Postoperative delirium, insomnia, and pseudopsia were assessed for 1 week. Postoperative total bacterial counts changed significantly from 10.2 ± 0.2 log10 cells/g of feces to 9.8 ± 0.5 in the first postoperative samples (p = 0.003) and 10.0 ± 0.4 in the samples before discharge (p = 0.039). Fecal pH was 6.9 ± 0.6 before surgery and 7.4 ± 0.7 in the first postoperative samples (p = 0.001). Postoperative Staphylococcus and Pseudomonas counts were significantly higher in patients with postoperative pseudopsia than in patients without pseudopsia (3.2 ± 1.3 vs. 5.4 ± 0.9; p = 0.012 and 1.7 ± 0.8 vs. 4.6 ± 2.7; p = 0.001). Conclusions Total bacterial counts were significantly lower after surgery and until discharge. Fecal pH was significantly higher than preoperative levels. Staphylococcus and Pseudomonas counts were significantly higher in patients with postoperative pseudopsia.


Gut ◽  
2018 ◽  
Vol 67 (12) ◽  
pp. 2097-2106 ◽  
Author(s):  
Andrea Ticinesi ◽  
Christian Milani ◽  
Angela Guerra ◽  
Franca Allegri ◽  
Fulvio Lauretani ◽  
...  

ObjectivesThe involvement of the gut microbiota in the pathogenesis of calcium nephrolithiasis has been hypothesised since the discovery of the oxalate-degrading activity of Oxalobacter formigenes, but never comprehensively studied with metagenomics. The aim of this case–control study was to compare the faecal microbiota composition and functionality between recurrent idiopathic calcium stone formers (SFs) and controls.DesignFaecal samples were collected from 52 SFs and 48 controls (mean age 48±11). The microbiota composition was analysed through 16S rRNA microbial profiling approach. Ten samples (five SFs, five controls) were also analysed with deep shotgun metagenomics sequencing, with focus on oxalate-degrading microbial metabolic pathways. Dietary habits, assessed through a food-frequency questionnaire, and 24-hour urinary excretion of prolithogenic and antilithogenic factors, including calcium and oxalate, were compared between SFs and controls, and considered as covariates in the comparison of microbiota profiles.ResultsSFs exhibited lower faecal microbial diversity than controls (Chao1 index 1460±363vs 1658±297, fully adjusted p=0.02 with stepwise backward regression analysis). At multivariate analyses, three taxa (Faecalibacterium, Enterobacter, Dorea) were significantly less represented in faecal samples of SFs. The Oxalobacter abundance was not different between groups. Faecal samples from SFs exhibited a significantly lower bacterial representation of genes involved in oxalate degradation, with inverse correlation with 24-hour oxalate excretion (r=−0.87, p=0.002). The oxalate-degrading genes were represented in several bacterial species, whose cumulative abundance was inversely correlated with oxaluria (r=−0.85, p=0.02).ConclusionsIdiopathic calcium SFs exhibited altered gut microbiota composition and functionality that could contribute to nephrolithiasis physiopathology.


2019 ◽  
Vol 20 (13) ◽  
pp. 3306 ◽  
Author(s):  
Bo Yang ◽  
Yingqi Chen ◽  
Catherine Stanton ◽  
R. Paul Ross ◽  
Yuan-Kun Lee ◽  
...  

Our objective was to investigate the effects of different delivery and feeding modes on the gut microbiota composition of early infants with special emphasis on Bifidobacterium and Lactobacillus profiles at species level. 16S rRNA V3-V4 regions, bifidobacterial, and lactobacilli groEL genes from infant feces were sequenced by Illumina MiSeq. Gut microbiota abundance was significantly different, where standard vaginally delivered (SVD) and breast-fed (BF) groups were higher in comparison with caesarean section (CS), milk-powder-fed (MPF), and mixed-fed (MF) groups. The genus unclassified Enterobacteriaceae was dominant, followed by Bifidobacterium, which was highly abundant in SVD and BF groups. The dominant Bifidobacterium species in all groups were B. longum subsp. longum, B. longum subsp. infantis and B. animalis subsp. lactis. B. dentium and the diversity of Bifidobacterium in SVD and BF groups were significantly higher. For Lactobacillus profiles, L. rhamnosus and L. gasseri were dominant among all the groups, while Lactobacillus species in CS and MPF groups were more diverse. Functional predictions showed significant differences between delivery mode and feeding groups, such as phosphotransferase system as well as taurine and hypotaurine metabolism. In early infants with different delivery and feeding methods, gut microbiota—particularly bifidobacteria and lactobacilli communities—showed significant differences, with strong implications for physiological functions.


Sign in / Sign up

Export Citation Format

Share Document