scholarly journals Sponges of Carboxymethyl Chitosan Grafted with Collagen Peptides for Wound Healing

2019 ◽  
Vol 20 (16) ◽  
pp. 3890 ◽  
Author(s):  
Yu Cheng ◽  
Zhang Hu ◽  
Yuntao Zhao ◽  
Zuhao Zou ◽  
Sitong Lu ◽  
...  

Burns are physically debilitating and potentially fatal injuries. Two marine biomaterials, carboxymethyl chitosan (CMC) and collagen peptides (COP), have emerged as promising burn dressings. In this paper, sponges of carboxymethyl chitosan grafted with collagen peptide (CMC–COP) were prepared by covalent coupling and freeze drying. Scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy were then used to characterize the prepared sponges. To evaluate the wound healing activity of the CMC–COP sponges, in vitro tests including cell viability scratch wound healing and scald wound healing experiments were performed in rabbits. Appearance studies revealed the porous nature of sponges and FTIR spectroscopy demonstrated the successful incorporation of COP into CMC. The in vitro scratch assay showed that treatment with CMC–COP sponges (at 100 μg/mL) had significant effects on scratch closure. For burn wounds treated with CMC–COP, regeneration of the epidermis and collagen fiber deposition was observed on day 7, with complete healing of the epidermis and wound on days 14 and 21, respectively. Based on the pathological examination by hematoxylin and eosinstaining, the CMC–COP group demonstrated pronounced wound healing efficiencies. These results confirmed that the CMC–COP treatment enhanced cell migration and promoted skin regeneration, thereby highlighting the potential application of these sponges in burn care.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 2096
Author(s):  
Ina Andreea Antonescu (Mintaș) ◽  
Angela Antonescu ◽  
Florina Miere (Groza) ◽  
Luminița Fritea ◽  
Alin Cristian Teușdea ◽  
...  

Plants are an inexhaustible source of compounds with different medicinal properties, suitable as alternative options for the prevention and treatment of various pathologies. They are safe, effective and economical. In this paper, a combined extract made of Ocimum basilicum and Trifolium pratense extracts (EOT) was used for the first time to demonstrate its healing effect on dermal pathologies. To evaluate the wound healing effect of EOT, a novel gel formulation was prepared and subsequently tested in vitro (using the scratch test assay) and in vivo (on an animal model). The in vitro tests demonstrated the complete recovery of the dermal fibroblast monolayer when treated with EOT in a concentration of 50 µg/mL. In vivo results using a hydrogel formulation based on EOT demonstrated improved wound contraction time and complete healing after 13 days of treatment. Moreover, a clinical case of Psoriasis vulgaris was presented, in which one week of treatment led to the significant improvement of the patient’s health. In conclusion, the topical use of the novel gel formulation containing EOT is a successful therapeutic alternative in the treatment of dermal diseases.



Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1795
Author(s):  
Judith Salas-Oropeza ◽  
Manuel Jimenez-Estrada ◽  
Armando Perez-Torres ◽  
Andres Eliu Castell-Rodriguez ◽  
Rodolfo Becerril-Millan ◽  
...  

Bursera morelensis is used in Mexican folk medicine to treat wounds on the skin. It is an endemic tree known as “aceitillo”, and the antibacterial and antifungal activity of its essential oil has been verified; it also acts as an anti-inflammatory. All of these reported biological activities make the essential oil of B. morelensis a candidate to accelerate the wound-healing process. The objective was to determine the wound-healing properties of B. morelensis’ essential oil on a murine model. The essential oil was obtained by hydro-distillation, and the chemical analysis was performed by gas chromatography-mass spectrometry (GC-MS). In the murine model, wound-healing efficacy (WHE) and wound contraction (WC) were evaluated. Cytotoxic activity was evaluated in vitro using peritoneal macrophages from BALB/c mice. The results showed that 18 terpenoid-type compounds were identified in the essential oil. The essential oil had remarkable WHE regardless of the dose and accelerated WC and was not cytotoxic. In vitro tests with fibroblasts showed that cell viability was dose-dependent; by adding 1 mg/mL of essential oil (EO) to the culture medium, cell viability decreased below 80%, while, at doses of 0.1 and 0.01 mg/mL, it remained around 90%; thus, EO did not intervene in fibroblast proliferation, but it did influence fibroblast migration when wound-like was done in monolayer cultures. The results of this study demonstrated that the essential oil was a pro-wound-healing agent because it had good healing effectiveness with scars with good tensile strength and accelerated repair. The probable mechanism of action of the EO of B. morelensis, during the healing process, is the promotion of the migration of fibroblasts to the site of the wound, making them active in the production of collagen and promoting the remodeling of this collagen.







Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2488
Author(s):  
Judith Salas-Oropeza ◽  
Manuel Jimenez-Estrada ◽  
Armando Perez-Torres ◽  
Andres Eliu Castell-Rodriguez ◽  
Rodolfo Becerril-Millan ◽  
...  

Bursera morelensis is used in Mexican folk medicine to treat wounds on the skin. Recently, it was shown that the essential oil (EO) of B. morelensis has wound healing activity, accelerating cutaneous wound closure and generating scars with good tensile strength. α-pinene (PIN) and α-phellandrene (FEL) are terpenes that have been found in this EO, and it has been shown in different studies that both have anti-inflammatory activity. The aim of this study was to determine the wound healing activity of these two terpenes. The results of in vitro tests demonstrate that PIN and FEL are not cytotoxic at low concentrations and that they do not stimulate fibroblast cell proliferation. In vivo tests showed that the terpenes produce stress-resistant scars and accelerate wound contraction, due to collagen deposition from the early stages, in wounds treated with both terpenes. Therefore, we conclude that both α-pinene and α-phellandrene promote the healing process; this confirms the healing activity of the EO of B. morelensis, since having these terpenes as part of its chemical composition explains part of its demonstrated activity.



2005 ◽  
Vol 100 (1-2) ◽  
pp. 100-107 ◽  
Author(s):  
P.J. Houghton ◽  
P.J. Hylands ◽  
A.Y. Mensah ◽  
A. Hensel ◽  
A.M. Deters
Keyword(s):  




2007 ◽  
Vol 330-332 ◽  
pp. 807-810
Author(s):  
Qi Huang ◽  
Feng Cao ◽  
Dong Xu Li

N,O-carboxymethyl chitosan (CMCTS) was added in Calcium phosphate bone cement (CPC). A preliminary study was carried out in order to evaluate the biocompatibility of CPC containing CMCTS. In vitro tests were done using extract liquid from normal saline. The result showed that the biological reaction complied with standards of GB/16886 and the composite might have good biocompatibility.



2011 ◽  
Vol 10 (4) ◽  
pp. 369-378 ◽  
Author(s):  
Sikai Peng ◽  
Wanshun Liu ◽  
Baoqin Han ◽  
Jing Chang ◽  
Minyu Li ◽  
...  


Pharmaceutics ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 815
Author(s):  
Marco Ruggeri ◽  
Eleonora Bianchi ◽  
Silvia Rossi ◽  
Barbara Vigani ◽  
Maria Cristina Bonferoni ◽  
...  

Chronic wounds, such as pressure ulcers, diabetic ulcers, venous ulcers and arterial insufficiency ulcers, are lesions that fail to proceed through the normal healing process within a period of 12 weeks. The treatment of skin chronic wounds still represents a great challenge. Wound medical devices (MDs) range from conventional and advanced dressings, up to skin grafts, but none of these are generally recognized as a gold standard. Based on recent developments, this paper reviews nanotechnology-based medical devices intended as skin substitutes. In particular, nanofibrous scaffolds are promising platforms for wound healing, especially due to their similarity to the extracellular matrix (ECM) and their capability to promote cell adhesion and proliferation, and to restore skin integrity, when grafted into the wound site. Nanotechnology-based scaffolds are emphasized here. The discussion will be focused on the definition of critical quality attributes (chemical and physical characterization, stability, particle size, surface properties, release of nanoparticles from MDs, sterility and apyrogenicity), the preclinical evaluation (biocompatibility testing, alternative in vitro tests for irritation and sensitization, wound healing test and animal wound models), the clinical evaluation and the CE (European Conformity) marking of nanotechnology-based MDs.



Sign in / Sign up

Export Citation Format

Share Document