scholarly journals Fluoxetine Suppresses Glutamate- and GABA-Mediated Neurotransmission by Altering SNARE Complex

2019 ◽  
Vol 20 (17) ◽  
pp. 4247 ◽  
Author(s):  
Vesna Lazarevic ◽  
Ioannis Mantas ◽  
Ivana Flais ◽  
Per Svenningsson

Major depressive disorder is one of the most common neuropsychiatric disorders worldwide. The treatment of choice that shows good efficacy in mood stabilization is based on selective serotonin reuptake inhibitors (SSRIs). Their primary mechanism of action is considered to be the increased synaptic concentration of serotonin through blockade of the serotonin transporter (SERT). In this study, we described an alternative mode of action of fluoxetine (FLX), which is a representative member of the SSRI class of antidepressants. We observed that FLX robustly decreases both glutamatergic and gamma-Aminobutyric acid (GABA)-ergic synaptic release in a SERT-independent manner. Moreover, we showed that this effect may stem from the ability of FLX to change the levels of main components of the SNARE (solubile N-ethylmaleimide-sensitive factor attachment protein receptor) complex. Our data suggest that this downregulation of SNARE fusion machinery involves diminished activity of protein kinase C (PKC) due to FLX-induced blockade of P/Q type of voltage-gated calcium channels (VGCCs). Taken together, by virtue of its inhibition at SERT, fluoxetine increases extracellular serotonin levels; however, at the same time, by reducing SNARE complex function, this antidepressant reduces glutamate and GABA release.

2003 ◽  
Vol 370 (1) ◽  
pp. 213-221 ◽  
Author(s):  
Véronique PROUX-GILLARDEAUX ◽  
Thierry GALLI ◽  
Isabelle CALLEBAUT ◽  
Anatoly MIKHAILIK ◽  
Georges CALOTHY ◽  
...  

Synaptobrevin 2 (Sb2), syntaxin1 (Stx1), and synaptosomal-associated protein of 25kDa (SNAP-25) are the main components of the soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) complex involved in fusion of synaptic vesicles with the presynaptic plasma membrane. We report the characterization of D53, a novel SNARE-binding protein preferentially expressed in neural and neuro-endocrine cells. Its two-dimensional organization, established by the hydrophobic cluster analysis, is reminiscent of SNARE proteins. D53 contains two putative helical regions, one of which includes a large coiled-coil domain involved in the interaction with Sb2 in vitro. Following subcellular fractionation, endogenous D53 was specifically detected in the membrane-containing fraction of PC12 cells, where it co-immunoprecipitated with Sb2. Analysis by confocal microscopy showed that, in these cells, endogenous D53 co-localized partially with the transferrin receptor in early endosomes. In vitro assays revealed that binding properties of D53 to Stx1 and Sb2 are comparable with those of SNAP-25. Furthermore, D53 forms Sb2/Stx1/D53 complexes in vitro in a manner similar to SNAP-25. We propose that D53 could be involved in the assembly or disassembly of endosomal SNARE complexes by regulating Sb2/Stx interaction.


2013 ◽  
Vol 24 (4) ◽  
pp. 510-520 ◽  
Author(s):  
Matyáš Fendrych ◽  
Lukáš Synek ◽  
Tamara Pečenková ◽  
Edita Janková Drdová ◽  
Juraj Sekereš ◽  
...  

The exocyst complex, an effector of Rho and Rab GTPases, is believed to function as an exocytotic vesicle tether at the plasma membrane before soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) complex formation. Exocyst subunits localize to secretory-active regions of the plasma membrane, exemplified by the outer domain of Arabidopsis root epidermal cells. Using variable-angle epifluorescence microscopy, we visualized the dynamics of exocyst subunits at this domain. The subunits colocalized in defined foci at the plasma membrane, distinct from endocytic sites. Exocyst foci were independent of cytoskeleton, although prolonged actin disruption led to changes in exocyst localization. Exocyst foci partially overlapped with vesicles visualized by VAMP721 v-SNARE, but the majority of the foci represent sites without vesicles, as indicated by electron microscopy and drug treatments, supporting the concept of the exocyst functioning as a dynamic particle. We observed a decrease of SEC6–green fluorescent protein foci in an exo70A1 exocyst mutant. Finally, we documented decreased VAMP721 trafficking to the plasma membrane in exo70A1 and exo84b mutants. Our data support the concept that the exocyst-complex subunits dynamically dock and undock at the plasma membrane to create sites primed for vesicle tethering.


2011 ◽  
Vol 22 (2) ◽  
pp. 230-244 ◽  
Author(s):  
Marion Weber-Boyvat ◽  
Nina Aro ◽  
Konstantin G. Chernov ◽  
Tuula Nyman ◽  
Jussi Jäntti

The Sec1/Munc18 protein family members perform an essential, albeit poorly understood, function in association with soluble n-ethylmaleimide sensitive factor adaptor protein receptor (SNARE) complexes in membrane fusion. The Saccharomyces cerevisiae Sec1p has a C-terminal tail that is missing in its mammalian homologues. Here we show that deletion of the Sec1p tail (amino acids 658–724) renders cells temperature sensitive for growth, reduces sporulation efficiency, causes a secretion defect, and abolishes Sec1p-SNARE component coimmunoprecipitation. The results show that the Sec1p tail binds preferentially ternary Sso1p-Sec9p-Snc2p complexes and it enhances ternary SNARE complex formation in vitro. The bimolecular fluorescence complementation (BiFC) assay results suggest that, in the SNARE-deficient sso2–1 Δsso1 cells, Mso1p, a Sec1p binding protein, helps to target Sec1p(1–657) lacking the C-terminal tail to the sites of secretion. The results suggest that the Mso1p C terminus is important for Sec1p(1–657) targeting. We show that, in addition to Sec1p, Mso1p can bind the Rab-GTPase Sec4p in vitro. The BiFC results suggest that Mso1p acts in close association with Sec4p on intracellular membranes in the bud. This association depends on the Sec4p guanine nucleotide exchange factor Sec2p. Our results reveal a novel binding mode between the Sec1p C-terminal tail and the SNARE complex, and suggest a role for Mso1p as an effector of Sec4p.


2008 ◽  
Vol 413 (3) ◽  
pp. 479-491 ◽  
Author(s):  
Zoë J. Palmer ◽  
Rory R. Duncan ◽  
James R. Johnson ◽  
Lu-Yun Lian ◽  
Luciane V. Mello ◽  
...  

Exocytosis is regulated by NO in many cell types, including neurons. In the present study we show that syntaxin 1a is a substrate for S-nitrosylation and that NO disrupts the binding of Munc18-1 to the closed conformation of syntaxin 1a in vitro. In contrast, NO does not inhibit SNARE {SNAP [soluble NSF (N-ethylmaleimide-sensitive fusion protein) attachment protein] receptor} complex formation or binding of Munc18-1 to the SNARE complex. Cys145 of syntaxin 1a is the target of NO, as a non-nitrosylatable C145S mutant is resistant to NO and novel nitrosomimetic Cys145 mutants mimic the effect of NO on Munc18-1 binding in vitro. Furthermore, expression of nitrosomimetic syntaxin 1a in living cells affects Munc18-1 localization and alters exocytosis release kinetics and quantal size. Molecular dynamic simulations suggest that NO regulates the syntaxin–Munc18 interaction by local rearrangement of the syntaxin linker and H3c regions. Thus S-nitrosylation of Cys145 may be a molecular switch to disrupt Munc18-1 binding to the closed conformation of syntaxin 1a, thereby facilitating its engagement with the membrane fusion machinery.


1993 ◽  
Vol 69 (2) ◽  
pp. 626-629 ◽  
Author(s):  
J. C. Behrends ◽  
G. ten Bruggencate

1. The effect of cholinergic receptor activation on gamma-aminobutyric acid (GABA)-mediated inhibitory synaptic transmission was investigated in voltage-clamped CA1 pyramidal neurons (HPNs) in the guinea pig hippocampal slice preparation. 2. The cholinergic agonist carbachol (1-10 microM) induced a prominent and sustained increase in the frequency and amplitudes of spontaneous inhibitory postsynaptic currents (IPSCs) in Cl(-)-loaded HPNs. The potentiation of spontaneous IPSCs was not dependent on excitatory synaptic transmission but was blocked by atropine (1 microM). 3. Monosynaptically evoked IPSCs were reversibly depressed by carbachol (10 microM). 4. The frequency of miniature IPSCs recorded in the presence of tetrodotoxin (0.6 or 1.2 microM) was reduced by carbachol (10 or 20 microM) in an atropine-sensitive manner. 5. We conclude that, while cholinergic receptor activation directly excites hippocampal GABAergic interneurons, it has, in addition, a suppressant effect on the synaptic release mechanism at GABAergic terminals. This dual modulatory pattern could explain the suppression of evoked IPSCs despite enhanced spontaneous transmission.


2015 ◽  
Vol 112 (25) ◽  
pp. E3291-E3299 ◽  
Author(s):  
Irena Vertkin ◽  
Boaz Styr ◽  
Edden Slomowitz ◽  
Nir Ofir ◽  
Ilana Shapira ◽  
...  

Stabilization of neuronal activity by homeostatic control systems is fundamental for proper functioning of neural circuits. Failure in neuronal homeostasis has been hypothesized to underlie common pathophysiological mechanisms in a variety of brain disorders. However, the key molecules regulating homeostasis in central mammalian neural circuits remain obscure. Here, we show that selective inactivation of GABAB, but not GABAA, receptors impairs firing rate homeostasis by disrupting synaptic homeostatic plasticity in hippocampal networks. Pharmacological GABAB receptor (GABABR) blockade or genetic deletion of the GB1a receptor subunit disrupts homeostatic regulation of synaptic vesicle release. GABABRs mediate adaptive presynaptic enhancement to neuronal inactivity by two principle mechanisms: First, neuronal silencing promotes syntaxin-1 switch from a closed to an open conformation to accelerate soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex assembly, and second, it boosts spike-evoked presynaptic calcium flux. In both cases, neuronal inactivity removes tonic block imposed by the presynaptic, GB1a-containing receptors on syntaxin-1 opening and calcium entry to enhance probability of vesicle fusion. We identified the GB1a intracellular domain essential for the presynaptic homeostatic response by tuning intermolecular interactions among the receptor, syntaxin-1, and the CaV2.2 channel. The presynaptic adaptations were accompanied by scaling of excitatory quantal amplitude via the postsynaptic, GB1b-containing receptors. Thus, GABABRs sense chronic perturbations in GABA levels and transduce it to homeostatic changes in synaptic strength. Our results reveal a novel role for GABABR as a key regulator of population firing stability and propose that disruption of homeostatic synaptic plasticity may underlie seizure's persistence in the absence of functional GABABRs.


2008 ◽  
Vol 183 (2) ◽  
pp. 323-337 ◽  
Author(s):  
Toshiaki Sakisaka ◽  
Yasunori Yamamoto ◽  
Sumiko Mochida ◽  
Michiko Nakamura ◽  
Kouki Nishikawa ◽  
...  

Neurotransmitter release from presynaptic nerve terminals is regulated by soluble NSF attachment protein receptor (SNARE) complex–mediated synaptic vesicle fusion. Tomosyn inhibits SNARE complex formation and neurotransmitter release by sequestering syntaxin-1 through its C-terminal vesicle-associated membrane protein (VAMP)–like domain (VLD). However, in tomosyn-deficient mice, the SNARE complex formation is unexpectedly decreased. In this study, we demonstrate that the N-terminal WD-40 repeat domain of tomosyn catalyzes the oligomerization of the SNARE complex. Microinjection of the tomosyn N-terminal WD-40 repeat domain into neurons prevented stimulated acetylcholine release. Thus, tomosyn inhibits neurotransmitter release by catalyzing oligomerization of the SNARE complex through the N-terminal WD-40 repeat domain in addition to the inhibitory activity of the C-terminal VLD.


2020 ◽  
Vol 21 (3) ◽  
pp. 790 ◽  
Author(s):  
Maria Carolina Velasquez-Martinez ◽  
Bermary Santos-Vera ◽  
Maria E. Velez-Hernandez ◽  
Rafael Vazquez-Torres ◽  
Carlos A. Jimenez-Rivera

The ventral tegmental area (VTA) plays an important role in the reward and motivational processes that facilitate the development of drug addiction. Presynaptic α1-AR activation modulates glutamate and Gamma-aminobutyric acid (GABA) release. This work elucidates the role of VTA presynaptic α1-ARs and their modulation on glutamatergic and GABAergic neurotransmission during cocaine sensitization. Excitatory and inhibitory currents (EPSCs and IPSCs) measured by a whole cell voltage clamp show that α1-ARs activation increases EPSCs amplitude after 1 day of cocaine treatment but not after 5 days of cocaine injections. The absence of a pharmacological response to an α1-ARs agonist highlights the desensitization of the receptor after repeated cocaine administration. The desensitization of α1-ARs persists after a 7-day withdrawal period. In contrast, the modulation of α1-ARs on GABA neurotransmission, shown by decreases in IPSCs’ amplitude, is not affected by acute or chronic cocaine injections. Taken together, these data suggest that α1-ARs may enhance DA neuronal excitability after repeated cocaine administration through the reduction of GABA inhibition onto VTA dopamine (DA) neurons even in the absence of α1-ARs’ function on glutamate release and protein kinase C (PKC) activation. α1-AR modulatory changes in cocaine sensitization increase our knowledge of the role of the noradrenergic system in cocaine addiction and may provide possible avenues for therapeutics.


Cells ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1655 ◽  
Author(s):  
Bor Luen Tang

Syntaxin 16, a Qa-SNARE (soluble N-ethylmaleimide-sensitive factor activating protein receptor), is involved in a number of membrane-trafficking activities, particularly transport processes at the trans-Golgi network (TGN). Recent works have now implicated syntaxin 16 in the autophagy process. In fact, syntaxin 16 appears to have dual roles, firstly in facilitating the transport of ATG9a-containing vesicles to growing autophagosomes, and secondly in autolysosome formation. The former involves a putative SNARE complex between syntaxin 16, VAMP7 and SNAP-47. The latter occurs via syntaxin 16’s recruitment by Atg8/LC3/GABARAP family proteins to autophagosomes and endo-lysosomes, where syntaxin 16 may act in a manner that bears functional redundancy with the canonical autophagosome Qa-SNARE syntaxin 17. Here, I discuss these recent findings and speculate on the mechanistic aspects of syntaxin 16’s newly found role in autophagy.


Sign in / Sign up

Export Citation Format

Share Document