scholarly journals Activating Hippo Pathway via Rassf1 by Ursolic Acid Suppresses the Tumorigenesis of Gastric Cancer

2019 ◽  
Vol 20 (19) ◽  
pp. 4709 ◽  
Author(s):  
Seong-Hun Kim ◽  
Hua Jin ◽  
Ruo Yu Meng ◽  
Da-Yeah Kim ◽  
Yu Chuan Liu ◽  
...  

The Hippo pathway is often dysregulated in many carcinomas, which results in various stages of tumor progression. Ursolic acid (UA), a natural compound that exists in many herbal plants, is known to obstruct cancer progression and exerts anti-carcinogenic effect on a number of human cancers. In this study, we aimed to examine the biological mechanisms of action of UA through the Hippo pathway in gastric cancer cells. MTT assay showed a decreased viability of gastric cancer cells after treatment with UA. Following treatment with UA, colony numbers and the sizes of gastric cancer cells were significantly diminished and apoptosis was observed in SNU484 and SNU638 cells. The invasion and migration rates of gastric cancer cells were suppressed by UA in a dose-dependent manner. To further determine the gene expression patterns that are related to the effects of UA, a microarray analysis was performed. Gene ontology analysis revealed that several genes, such as the Hippo pathway upstream target gene, ras association domain family (RASSF1), and its downstream target genes (MST1, MST2, and LATS1) were significantly upregulated by UA, while the expression of YAP1 gene, together with oncogenes (FOXM1, KRAS, and BATF), were significantly decreased. Similar to the gene expression profiling results, the protein levels of RASSF1, MST1, MST2, LATS1, and p-YAP were increased, whereas those of CTGF were decreased by UA in gastric cancer cells. The p-YAP expression induced in gastric cancer cells by UA was reversed with RASSF1 silencing. In addition, the protein levels in the Hippo pathway were increased in the UA-treated xenograft tumor tissues as compared with that in the control tumor tissues; thus, UA significantly inhibited the tumorigenesis of gastric cancer in vivo in xenograft animals. Collectively, UA diminishes the proliferation and metastasis of gastric cancer via the regulation of Hippo pathway through Rassf1, which suggests that UA can be used as a potential chemopreventive and therapeutic agent for gastric cancer.

2021 ◽  
Vol 22 (11) ◽  
pp. 5955
Author(s):  
Na-Ri Lee ◽  
Da-Yeah Kim ◽  
Hua Jin ◽  
Ruoyu Meng ◽  
Ok Hee Chae ◽  
...  

Gastric cancer is the fifth most common cancer and the third leading cause of cancer-related deaths worldwide. Histone deacetylase (HDAC) inhibitors are a new class of cytostatic agents available for the treatment of various cancers and diseases. Although numerous clinical and pre-clinical trials on the anticancer effects of panobinostat have been conducted, only a few reports have investigated its efficacy in gastric cancer. The present study aimed to investigate the effects of panobinostat in gastric cancer cells. Panobinostat significantly inhibited the cell viability and proliferation of the gastric cancer cell lines SNU484 and SNU638 in a dose-dependent manner; it reduced the colony-forming ability of these cells. Moreover, it induced apoptosis as indicated by increased protein levels of cleaved poly ADP-ribose polymerase and cleaved caspase-3. Panobinostat induced the G2/M cell cycle arrest in SNU484 and SNU638 cells and subsequently decreased the G2/M phase regulatory-associated protein expression of p-Wee1, Myt1, and Cdc2. Furthermore, panobinostat significantly inhibited the metastasis of SNU484 and SNU638 cells by regulating the expression of MMP-9 and E-cadherin. Further, it decreased the protein levels of p-Akt and forkhead box protein M1 (FOXM1). These effects were reversed by the Akt agonist SC79 and were accelerated by the Akt inhibitor LY2940002. Moreover, tumor growth in xenograft animal experiments was suppressed by panobinostat. These results indicated that panobinostat inhibits the proliferation, metastasis, and cell cycle progression of gastric cancer cells by promoting apoptosis and inactivating Akt/FOXM1 signaling. Cumulatively, our present study suggests that panobinostat is a potential drug for the treatment of gastric cancer.


2013 ◽  
Vol 13 (1) ◽  
pp. 18 ◽  
Author(s):  
Biao Xie ◽  
Jianping Zhou ◽  
Guoshun Shu ◽  
Dong-cai Liu ◽  
Jiapeng Zhou ◽  
...  

2018 ◽  
Vol 38 (6) ◽  
Author(s):  
Jingjing Zhang ◽  
Jun Xu ◽  
Yonghong Dong ◽  
Bo Huang

In view of the high incidence of gastric cancer and the functions of hypoxia-inducible factor 1α (HIF-1α), our study aimed to investigate the functionality of HIF-1α in gastric cancer, and to explore the diagnostic and prognostic values of HIF-1α for this disease. Expression of HIF-1α in tumor tissues and adjacent healthy tissues as well as serum collected from both gastric cancer patients and normal healthy controls was detected by qRT-PCR. Survival analysis was performed using Kaplan–Meier method. HIF-1α siRNA silencing cell lines were established. Effects of HIF-1α siRNA silencing as well as PI3K activator sc3036 on proliferation, migration, and invasion of gastric cancer cells were detected by Cell counting kit (CCK-8) assay, and Transwell migration and invasion assay. Effects of HIF-1α siRNA silencing on AKT and VEGF were detected by Western blot. Expression of HIF-1α was significantly down-regulated in tumor tissues than in adjacent healthy tissues in most gastric cancer patients. Serum levels of HIF-1α were also higher in gastric cancer patients than in normal healthy people. Serum HIF-1α showed promising diagnostic and prognostic values for gastric cancer. HIF-1α siRNA silencing inhibited the proliferation, migration, and invasion of gastric cancer cells, while PI3K activator sc3036 treatment reduced those inhibitory effects. Down-regulation of HIF-1α can inhibit the proliferation, migration, and invasion of gastric cancer possibly by inhibiting PI3K/AKT pathway and VEGF expression.


2019 ◽  
Vol 17 ◽  
pp. 205873921984553
Author(s):  
Ying Guo ◽  
Li Zhang ◽  
Guangyu Zhou ◽  
Qingjie Ma ◽  
Shi Gao ◽  
...  

This study was designed to investigate the effects of siRNA-mediated silencing of Bmi-1 gene expression on proliferation of AGS gastric cancer cell. siRNA Bmi-1 was transfected into human AGS gastric cancer cells by liposome (as siRNA Bmi-1 group) with negative control (as control group); the expressions of Bmi-1 and apoptosis-related genes like P21, Bax, and Bcl-2 in AGS cells were determined by Western blot method; the apoptosis of AGS cells was detected by flow cytometry double staining and Hoechst staining; and cell cycle was measured by flow cytometry. Compared with the control group, the expression of Bmi-1 in the siRNA Bmi-1 group was significantly decreased ( P < 0.05), the apoptosis rate was increased ( P < 0.05), and cell cycles were arrested at G1 phase (P < 0.05); the expression level of P21 and Bax in cells was significantly up-regulated while that of Bcl-2 down-regulated ( P < 0.05). The down regulation of Bmi-1 can inhibit the proliferation of AGS gastric cancer cell and promote its apoptosis, which takes such effects mainly by up-regulating P21 as well as Bax and down-regulating Bcl-2.


2016 ◽  
Vol 38 (5) ◽  
pp. 1939-1951 ◽  
Author(s):  
Lei Li ◽  
Lian-Mei Zhao ◽  
Su-li Dai ◽  
Wen-Xuan Cui ◽  
Hui-Lai Lv ◽  
...  

Background/Aims: Periplocin is extracted from the traditional herbal medicine cortex periplocae, which has been reported to suppress the growth of cancer cells. However, little is known about its effect on gastric cancer cells. Methods: Gastric cancer cells were treated with periplocin, and cell viability was assessed using MTS assay. Flow cytometry and TUNEL staining were performed to evaluate apoptosis, and protein expression was examined by western blotting. Microarray analysis was used to screen for changes in related genes. Results: We found that periplocin had an inhibitory effect on gastric cancer cell viability in a dose-dependent manner. Periplocin inhibited cell viability via the ERK1/2-EGR1 pathway to induce apoptosis. Periplocin also inhibited the growth of tumor xenografts and induced apoptosis in vivo. Conclusion: Our results show that periplocin inhibits the proliferation of gastric cancer cells and induces apoptosis in vitro and in vivo, indicating its potential to be used as an antitumor drug.


Sign in / Sign up

Export Citation Format

Share Document