scholarly journals Comparative Transcriptome Analysis Reveals the Cause for Accumulation of Reactive Oxygen Species During Pollen Abortion in Cytoplasmic Male-Sterile Kenaf Line 722HA

2019 ◽  
Vol 20 (21) ◽  
pp. 5515
Author(s):  
Zhou ◽  
Liu ◽  
Chen ◽  
Liu ◽  
Wang ◽  
...  

Cytoplasmic male sterility (CMS) is a maternally inherited trait used for hybrid production in plants, a novel kenaf CMS line 722HA was derived from the thermo-sensitive male-sterile mutant ‘HMS’ by recurrent backcrossing with 722HB. The line 722HA has great potential for hybrid breeding in kenaf. However, the underlying molecular mechanism that controls pollen abortion in 722HA remains unclear, thus limiting the full utilization of this line. To understand the possible mechanism governing pollen abortion in 722HA, cytological, transcriptomic, and biochemical analyses were carried out to compare the CMS line 722HA and its maintainer line 722HB. Cytological observations of the microspore development revealed premature degradation of the tapetum at the mononuclear stage, which resulted in pollen dysfunction. The k-means clustering analysis of differentially expressed genes (DEGs) revealed that these genes are related to processes associated with the accumulation of reactive oxygen species (ROS), including electron transport chain, F1F0-ATPase proton transport, positive regulation of superoxide dismutase (SOD), hydrogen peroxide catabolic, and oxidation-reduction. Biochemical analysis indicated that ROS-scavenging capability was lower in 722HA than in 722HB, resulting in an accumulation of excess ROS, which is consistent with the transcriptome results. Taken together, these results demonstrate that excessive ROS accumulation may affect the normal development of microspores. Our study provides new insight into the molecular mechanism of pollen abortion in 722HA and will promote further studies of kenaf hybrids.

2013 ◽  
Vol 93 (4) ◽  
pp. 675-681 ◽  
Author(s):  
Qing Song Ba ◽  
Gai Sheng Zhang ◽  
Jun Sheng Wang ◽  
Hui Xue Che ◽  
Hong Zhan Liu ◽  
...  

Ba, Q. S., Zhang, G. S., Wang, J. S., Che, H. X., Liu, H. Z., Niu, N., Ma, S. C. and Wang, J. W. 2013. Relationship between metabolism of reactive oxygen species and chemically induced male sterility in wheat (Triticum aestivum L.). Can. J. Plant Sci. 93: 675–681. Chemically induced male sterility (CIMS) systems in wheat are among the male sterility types used for hybrid wheat (Triticum aestivum L.) production in China. Some studies suggested that male sterile line Xi'nong 1376-CIMS induced by chemical hybridizing agents (CHA) may suffer from oxidative stress as its cyanide-resistant respiration is lower than that of Xi'nong1376. To elucidate the metabolic mechanism of reactive oxygen species (ROS) in the CIMS anthers, the metabolism changes in the production and scavenging of ROS and gene expression related to ROS-scavenging enzymes were investigated in the anther of Xi'nong 1376-CIMS and Xi'nong1376.Anthers of Xi'nong 1376-CIMS had higher contents of [Formula: see text] and H2O2 than those of 1376, which corresponds to expression level of the NADPH oxidase (NOX) gene, and has higher contents of malondialdehyde compared with 1376. Simultaneously, there were lower activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascrodate peroxidase (APX) in scavenging ROS in the anthers of the Xi'nong 1376-CIMS line than in Xi'nong1376. Meanwhile, the expressions of SOD, POD, CAT and APX genes in 1376 were always higher at different levels than those in the Xi'nong 1376-CIMS line except for POD in stage 1. Therefore, it is possible that the sterility in Xi'nong 1376-CIMS is related to the abortion of microspores induced by chronic oxidative stress caused by an abnormal increase in ROS.


2021 ◽  
Vol 22 (3) ◽  
pp. 1107
Author(s):  
Yiding Liu ◽  
Bujin Zhou ◽  
Aziz Khan ◽  
Jie Zheng ◽  
Farman Ullah Dawar ◽  
...  

Male sterility (MS) plays a key role in the hybrid breed production of plants. Researchers have focused on the association between genetic male sterility (GMS) and cytoplasmic male sterility (CMS) in kenaf. In this study, P9BS (a natural GMS mutant of the kenaf line P9B) and male plants of P9B were used as parents in multiple backcross generations to produce P9SA, a CMS line with stable sterility, to explore the molecular mechanisms of the association between GMS and CMS. The anthers of the maintainer (P9B), GMS (P9BS), and CMS (P9SA) lines were compared through phenotypic, cell morphological, physiological, biochemical observations, and transcriptome analysis. Premature degradation of the tapetum was observed at the mononuclear stage in P9BS and P9SA, which also had lower activity of reactive oxygen species (ROS) scavenging enzymes compared with P9B. Many coexpressed differentially expressed genes were related to ROS balance, including ATP synthase, electron chain transfer, and ROS scavenging processes were upregulated in P9B. CMS plants had a higher ROS accumulation than GMS plants. The MDA content in P9SA was 3.2 times that of P9BS, and therefore, a higher degree of abortion occurred in P9SA, which may indicate that the conversion between CMS and GMS is related to intracellular ROS accumulation. Our study adds new insights into the natural transformation of GMS and CMS in plants in general and kenaf in particular.


2021 ◽  
Author(s):  
Biz R. Turnell ◽  
Luisa Kumpitsch ◽  
Klaus Reinhardt

AbstractSperm aging is accelerated by the buildup of reactive oxygen species (ROS), which cause oxidative damage to various cellular components. Aging can be slowed by limiting the production of mitochondrial ROS and by increasing the production of antioxidants, both of which can be generated in the sperm cell itself or in the surrounding somatic tissues of the male and female reproductive tracts. However, few studies have compared the separate contributions of ROS production and ROS scavenging to sperm aging, or to cellular aging in general. We measured reproductive fitness in two lines of Drosophila melanogaster genetically engineered to (1) produce fewer ROS via expression of alternative oxidase (AOX), an alternative respiratory pathway; or (2) scavenge fewer ROS due to a loss-of-function mutation in the antioxidant gene dj-1β. Wild-type females mated to AOX males had increased fecundity and longer fertility durations, consistent with slower aging in AOX sperm. Contrary to expectations, fitness was not reduced in wild-type females mated to dj-1β males. Fecundity and fertility duration were increased in AOX and decreased in dj-1β females, indicating that female ROS levels may affect aging rates in stored sperm and/or eggs. Finally, we found evidence that accelerated aging in dj-1β sperm may have selected for more frequent mating. Our results help to clarify the relative roles of ROS production and ROS scavenging in the male and female reproductive systems.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Biz R. Turnell ◽  
Luisa Kumpitsch ◽  
Anne-Cécile Ribou ◽  
Klaus Reinhardt

Abstract Objective Sperm ageing has major evolutionary implications but has received comparatively little attention. Ageing in sperm and other cells is driven largely by oxidative damage from reactive oxygen species (ROS) generated by the mitochondria. Rates of organismal ageing differ across species and are theorized to be linked to somatic ROS levels. However, it is unknown whether sperm ageing rates are correlated with organismal ageing rates. Here, we investigate this question by comparing sperm ROS production in four lines of Drosophila melanogaster that have previously been shown to differ in somatic mitochondrial ROS production, including two commonly used wild-type lines and two lines with genetic modifications standardly used in ageing research. Results Somatic ROS production was previously shown to be lower in wild-type Oregon-R than in wild-type Dahomey flies; decreased by the expression of alternative oxidase (AOX), a protein that shortens the electron transport chain; and increased by a loss-of-function mutation in dj-1β, a gene involved in ROS scavenging. Contrary to predictions, we found no differences among these four lines in the rate of sperm ROS production. We discuss the implications of our results, the limitations of our study, and possible directions for future research.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Kaihua Ji ◽  
Lianying Fang ◽  
Hui Zhao ◽  
Qing Li ◽  
Yang Shi ◽  
...  

Unplanned exposure to radiation can cause side effects on high-risk individuals; meanwhile, radiotherapies can also cause injury on normal cells and tissues surrounding the tumor. Besides the direct radiation damage, most of the ionizing radiation- (IR-) induced injuries were caused by generation of reactive oxygen species (ROS). Human mesenchymal stem cells (hMSCs), which possess self-renew and multilineage differentiation capabilities, are a critical population of cells to participate in the regeneration of IR-damaged tissues. Therefore, it is imperative to search effective radioprotectors for hMSCs. This study was to demonstrate whether natural source ginger oleoresin would mitigate IR-induced injuries in human mesenchymal stem cells (hMSCs). We demonstrated that ginger oleoresin could significantly reduce IR-induced cytotoxicity, ROS generation, and DNA strand breaks. In addition, the ROS-scavenging mechanism of ginger oleoresin was also investigated. The results showed that ginger oleoresin could induce the translocation of Nrf2 to cell nucleus and activate the expression of cytoprotective genes encoding for HO-1 and NQO-1. It suggests that ginger oleoresin has a potential role of being an effective antioxidant and radioprotective agent.


Author(s):  
Varshinie Pillai ◽  
Leslie Buck ◽  
Ebrahim Lari

Goldfish are one of a few species able to avoid cellular damage during month-long periods in severely hypoxic environments. By suppressing action potentials in excitatory glutamatergic neurons, the goldfish brain decreases its overall energy expenditure. Co-incident with reductions in O2 availability is a natural decrease in cellular reactive oxygen species (ROS) generation, which has been proposed to function as part of a low oxygen signal transduction pathway. Therefore, using live-tissue fluorescence microscopy, we found that ROS production decreased by 10% with the onset of anoxia in goldfish telencephalic brain slices. Employing whole-cell patch-clamp recording, we found that like severe hypoxia the ROS scavengers N-acetyl cysteine (NAC) and MitoTEMPO, added during normoxic periods, depolarized membrane potential (severe hypoxia -73.6 to – 61.4 mV; NAC -76.6 to -66.2 mV; and MitoTEMPO -71.5 mV to -62.5 mV) and increased whole-cell conductance (severe hypoxia 5.7 to 8.0 nS; NAC 6 nS to 7.5 nS; and MitoTEMPO 6.0 nS to 7.6 nS). Also, in a subset of active pyramidal neurons these treatments reduced action potential firing frequency (severe hypoxia 0.18 Hz to 0.03 Hz; NAC 0.27 Hz to 0.06 Hz and MitoTEMPO 0.35 Hz to 0.08 Hz ). Neither severe hypoxia nor ROS scavenging impacted action potential threshold. The addition of exogenous hydrogen peroxide could reverse the effects of the antioxidants. Taken together, this supports a role for a reduction in [ROS] as a low oxygen signal in goldfish brain.


Biology ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1004
Author(s):  
Ignacio Jofré ◽  
Francisco Matus ◽  
Daniela Mendoza ◽  
Francisco Nájera ◽  
Carolina Merino

Manganese (Mn) oxidation is performed through oxidative Mn-oxidizing bacteria (MnOxb) as the main bio-weathering mechanism for Mn(III/IV) deposits during soil formation. However, with an increase in temperature, the respiration rate also increases, producing Reactive Oxygen Species (ROS) as by-products, which are harmful to microbial cells. We hypothesize that bacterial ROS oxidize Mn(II) to Mn(III/IV) as a secondary non-enzymatic temperature-dependent mechanism for cell protection. Fourteen MnOxb were isolated from Antarctic soils under the global warming effect, and peroxidase (PO) activity, ROS, and Mn(III/IV) production were evaluated for 120 h of incubation at 4 °C, 15 °C, and 30 °C. ROS contributions to Mn oxidation were evaluated in Arthrobacter oxydans under antioxidant (Trolox) and ROS-stimulated (menadione) conditions. The Mn(III/IV) concentration increased with temperature and positively correlated with ROS production. ROS scavenging with Trolox depleted the Mn oxidation, and ROS-stimulant increased the Mn precipitation in A. oxydans. Increasing the Mn(II) concentration caused a reduction in the membrane potential and bacterial viability, which resulted in Mn precipitation on the bacteria surface. In conclusion, bacterial ROS production serves as a complementary non-enzymatic temperature-dependent mechanism for Mn(II) oxidation as a response in warming environments.


Antioxidants ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 105 ◽  
Author(s):  
Janků ◽  
Luhová ◽  
Petřivalský

Reactive oxygen species (ROS) have been recognized as important signaling compoundsof major importance in a number of developmental and physiological processes in plants. Theexistence of cellular compartments enables efficient redox compartmentalization and ensuresproper functioning of ROS‐dependent signaling pathways. Similar to other organisms, theproduction of individual ROS in plant cells is highly localized and regulated bycompartment‐specific enzyme pathways on transcriptional and post‐translational level. ROSmetabolism and signaling in specific compartments are greatly affected by their chemicalinteractions with other reactive radical species, ROS scavengers and antioxidant enzymes. Adysregulation of the redox status, as a consequence of induced ROS generation or decreasedcapacity of their removal, occurs in plants exposed to diverse stress conditions. During stresscondition, strong induction of ROS‐generating systems or attenuated ROS scavenging can lead tooxidative or nitrosative stress conditions, associated with potential damaging modifications of cellbiomolecules. Here, we present an overview of compartment‐specific pathways of ROS productionand degradation and mechanisms of ROS homeostasis control within plant cell compartments.


Sign in / Sign up

Export Citation Format

Share Document