scholarly journals Next-Generation Fluorogen-Based Reporters and Biosensors for Advanced Bioimaging

2019 ◽  
Vol 20 (24) ◽  
pp. 6142 ◽  
Author(s):  
Tiphaine Péresse ◽  
Arnaud Gautier

Our ability to observe biochemical events with high spatial and temporal resolution is essential for understanding the functioning of living systems. Intrinsically fluorescent proteins such as the green fluorescent protein (GFP) have revolutionized the way biologists study cells and organisms. The fluorescence toolbox has been recently extended with new fluorescent reporters composed of a genetically encoded tag that binds endogenously present or exogenously applied fluorogenic chromophores (so-called fluorogens) and activates their fluorescence. This review presents the toolbox of fluorogen-based reporters and biosensors available to biologists. Various applications are detailed to illustrate the possible uses and opportunities offered by this new generation of fluorescent probes and sensors for advanced bioimaging.

PLoS Biology ◽  
2020 ◽  
Vol 18 (11) ◽  
pp. e3000936
Author(s):  
Gerard G. Lambert ◽  
Hadrien Depernet ◽  
Guillaume Gotthard ◽  
Darrin T. Schultz ◽  
Isabelle Navizet ◽  
...  

Using mRNA sequencing and de novo transcriptome assembly, we identified, cloned, and characterized 9 previously undiscovered fluorescent protein (FP) homologs from Aequorea victoria and a related Aequorea species, with most sequences highly divergent from A. victoria green fluorescent protein (avGFP). Among these FPs are the brightest green fluorescent protein (GFP) homolog yet characterized and a reversibly photochromic FP that responds to UV and blue light. Beyond green emitters, Aequorea species express purple- and blue-pigmented chromoproteins (CPs) with absorbances ranging from green to far-red, including 2 that are photoconvertible. X-ray crystallography revealed that Aequorea CPs contain a chemically novel chromophore with an unexpected crosslink to the main polypeptide chain. Because of the unique attributes of several of these newly discovered FPs, we expect that Aequorea will, once again, give rise to an entirely new generation of useful probes for bioimaging and biosensing.


ACS Nano ◽  
2015 ◽  
Vol 9 (10) ◽  
pp. 9528-9541 ◽  
Author(s):  
Sam Duwé ◽  
Elke De Zitter ◽  
Vincent Gielen ◽  
Benjamien Moeyaert ◽  
Wim Vandenberg ◽  
...  

2018 ◽  
Author(s):  
KM Quigley ◽  
ME Strader ◽  
MV Matz

AbstractCoral-dinoflagellate symbiosis is the key biological interaction enabling existence of modern-type coral reefs, but the mechanisms regulating initial host–symbiont attraction, recognition and symbiont proliferation thus far remain largely unclear. A common reef-building coral, Acropora millepora, displays conspicuous fluorescent polymorphism during all phases of its life cycle, due to the differential expression of fluorescent proteins (FPs) of the green fluorescent protein family. In this study, we examine whether fluorescent variation in young coral juveniles exposed to natural sediments is associated with the uptake of disparate Symbiodinium assemblages determined using ITS-2 deep sequencing. We found that Symbiodinium assemblages varied significantly when redness values varied, specifically in regards to abundances of clades A and C. Whether fluorescence was quantified as a categorical or continuous trait, clade A was found at higher abundances in redder juveniles. These preliminary results suggest juvenile fluorescence may be associated with Symbiodinium uptake, potentially acting as either as an attractant to ecologically specific types or as a mechanism to modulate the internal light environment to control Symbiodinium physiology within the host.


2005 ◽  
Vol 41 ◽  
pp. 113-128 ◽  
Author(s):  
Florian A. Salomons ◽  
Lisette G.G.C. Verhoef ◽  
Nico P. Dantuma

Regulated turnover of proteins in the cytosol and nucleus of eukaryotic cells is primarily performed by the ubiquitin–proteasome system (UPS). The UPS is involved in many essential cellular processes. Alterations in this proteolytic system are associated with a variety of human pathologies, such as neurodegenerative diseases, cancer, immunological disorders and inflammation. The precise role of the UPS in the pathophysiology of these diseases, however, remains poorly understood. Detection of UPS aberrations has been a major challenge because of the complexity of the system. Most studies focus on various aspects of the UPS, such as substrate recognition, ubiquitination, deubiquitination or proteasome activity, and do not provide a complete picture of the UPS as an integral system. To monitor the efficacy of the UPS, a number of reporter substrates have been developed based on fluorescent proteins, such as the green fluorescent protein and its spectral variants. These fluorescent UPS reporters contain specific degradation signals that target them with high efficiency and accuracy for proteasomal degradation. Several studies have shown that these reporters can probe the functionality of the UPS in cellular and animal models and provide us with important information on the status of the UPS under various conditions. Moreover, these reporters can aid the identification and development of novel anti-cancer and anti-inflammatory drugs based on UPS inhibition.


Author(s):  
Jun-Wei Liao ◽  
Robert Sung ◽  
Kuangsen Sung

Photochromism is the heart of photochromic fluorescent proteins. Excited-state proton transfer (ESPT) is the major photochromism for green fluorescent protein (GFP) and Z-E photoisomerization through τ-torsion is the major photochromism...


2016 ◽  
Vol 72 (12) ◽  
pp. 1298-1307 ◽  
Author(s):  
Damien Clavel ◽  
Guillaume Gotthard ◽  
David von Stetten ◽  
Daniele De Sanctis ◽  
Hélène Pasquier ◽  
...  

Until recently, genes coding for homologues of the autofluorescent protein GFP had only been identified in marine organisms from the phyla Cnidaria and Arthropoda. New fluorescent-protein genes have now been found in the phylum Chordata, coding for particularly bright oligomeric fluorescent proteins such as the tetrameric yellow fluorescent proteinlanYFP fromBranchiostoma lanceolatum. A successful monomerization attempt led to the development of the bright yellow-green fluorescent protein mNeonGreen. The structures oflanYFP and mNeonGreen have been determined and compared in order to rationalize the directed evolution process leading from a bright, tetrameric to a still bright, monomeric fluorescent protein. An unusual discolouration of crystals of mNeonGreen was observed after X-ray data collection, which was investigated using a combination of X-ray crystallography and UV–visible absorption and Raman spectroscopies, revealing the effects of specific radiation damage in the chromophore cavity. It is shown that X-rays rapidly lead to the protonation of the phenolate O atom of the chromophore and to the loss of its planarity at the methylene bridge.


2003 ◽  
Vol 11 (1) ◽  
pp. 3-4
Author(s):  
Stephen W. Carmichael

Temporal resolution has long been a challenge to microscopists. Certainly, spatial resolution has occupied center stage, but we're all concerned about what happens over time in a biologic system, for example, a cell. Tags such as green fluorescent protein (GFP) have been used with confocal microscopy and other light microscopic techniques to achieve outstanding temporal resolution, but good spatial and temporal resolution have proven to be difficult to achieve simultaneously. This has been accomplished in a remarkable study by Guido Gaietta, Thomas Deerinck, Stephen Adams, James Bouwer, Oded Tour, Dale Laird, Gina Sosinsky, Roger Tsien, and Mark Ellisman, who demonstrated a pulse-chase technique that correlates with both fluorescence and electron microscopy.


2009 ◽  
Vol 277 (1685) ◽  
pp. 1155-1160 ◽  
Author(s):  
Steven H. D. Haddock ◽  
Nadia Mastroianni ◽  
Lynne M. Christianson

Genes for the family of green-fluorescent proteins (GFPs) have been found in more than 100 species of animals, with some species containing six or more copies producing a variety of colours. Thus far, however, these species have all been within three phyla: Cnidaria, Arthropoda and Chordata. We have discovered GFP-type fluorescent proteins in the phylum Ctenophora, the comb jellies. The ctenophore proteins share the x YG chromophore motif of all other characterized GFP-type proteins. These proteins exhibit the uncommon property of reversible photoactivation, in which fluorescent emission becomes brighter upon exposure to light, then gradually decays to a non-fluorescent state. In addition to providing potentially useful optical probes with novel properties, finding a fluorescent protein in one of the earliest diverging metazoans adds further support to the possibility that these genes are likely to occur throughout animals.


2010 ◽  
Vol 76 (17) ◽  
pp. 5990-5994 ◽  
Author(s):  
Thomas Drepper ◽  
Robert Huber ◽  
Achim Heck ◽  
Franco Circolone ◽  
Anne-Kathrin Hillmer ◽  
...  

ABSTRACT Fluorescent proteins of the green fluorescent protein (GFP) family are commonly used as reporter proteins for quantitative analysis of complex biological processes in living microorganisms. Here we demonstrate that the fluorescence signal intensity of GFP-like proteins is affected under oxygen limitation and therefore does not reflect the amount of reporter protein in Escherichia coli batch cultures. Instead, flavin mononucleotide (FMN)-binding fluorescent proteins (FbFPs) are suitable for quantitative real-time in vivo assays under these conditions.


Sign in / Sign up

Export Citation Format

Share Document