scholarly journals In Vitro Generation of Oocytes from Ovarian Stem Cells (OSCs): In Search of Major Evidence

2019 ◽  
Vol 20 (24) ◽  
pp. 6225 ◽  
Author(s):  
Erica Silvestris ◽  
Stella D’Oronzo ◽  
Paola Cafforio ◽  
Anila Kardhashi ◽  
Miriam Dellino ◽  
...  

The existence of ovarian stem cells (OSCs) in women as well as their physiological role in post-menopausal age are disputed. However, accumulating evidence demonstrated that, besides the animal models including primarily mice, even in adult women putative OSCs obtained from ovarian cortex are capable to differentiate in vitro into oocyte-like cells (OLCs) expressing molecular markers typical of terminal stage of oogonial cell lineage. Recent studies describe that, similarly to mature oocytes, the OSC-derived OLCs also contain haploid karyotype. As proof of concept of their stem commitment, OSCs from mice differentiated to oocytes in vitro are suitable to be fertilized and implanted in sterilized animals resulting in embryo development. Despite enthusiasm for these data, which definitely require extended confirmation before considering potential application in humans for treatment of ovarian insufficiency, OSCs appear suitable for other clinical uses, restoring the endocrine derangements in premature ovarian failure or for fertility preservation in oncologic patients after anti-cancer treatments. In this context, the selection of viable oocytes generated from OSCs before chemotherapy protocols would overcome the potential adjunct oncogenic risk in women bearing hormone-dependent tumors who are repeatedly stimulated with high dose estrogens to induce oocyte maturation for their egg recruitment and cryopreservation.

Dose-Response ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 155932582098216
Author(s):  
Bing Wang ◽  
Kaoru Tanaka ◽  
Takanori Katsube ◽  
Kouichi Maruyama ◽  
Yasuharu Ninomiya ◽  
...  

Radioadaptive response (RAR) describes a phenomenon in a variety of in vitro and in vivo systems that a low-dose of priming ionizing radiation (IR) reduces detrimental effects of a subsequent challenge IR at higher doses. Among in vivo investigations, studies using the mouse RAR model (Yonezawa Effect) showed that RAR could significantly extenuate high-dose IR-induced detrimental effects such as decrease of hematopoietic stem cells and progenitor cells, acute radiation hematopoietic syndrome, genotoxicity and genomic instability. Meanwhile, it has been demonstrated that diet intervention has a great impact on health, and dietary restriction shows beneficial effects on numerous diseases in animal models. In this work, by using the mouse RAR model and mild dietary restriction (MDR), we confirmed that combination of RAR and MDR could more efficiently reduce radiogenotoxic damage without significant change of the RAR phenotype. These findings suggested that MDR may share some common pathways with RAR to activate mechanisms consequently resulting in suppression of genotoxicity. As MDR could also increase resistance to chemotherapy and radiotherapy in normal cells, we propose that combination of MDR, RAR, and other cancer treatments (i.e., chemotherapy and radiotherapy) represent a potential strategy to increase the treatment efficacy and prevent IR risk in humans.


2021 ◽  
Author(s):  
meng li ◽  
ning yang ◽  
li hao ◽  
wei zhou ◽  
lei li ◽  
...  

Abstract ObjectivesSteroid-induced osteoporosis (SIOP) is a secondary osteoporosis, which is a systemic bone disease characterized by low bone mass, bone microstructure damage, increased bone fragility, and easy fracture. However, the specific mechanism remains unclear. Glucocorticoid-induced death of osteoblasts and bone marrow mesenchymal stem cells (BMSCs) is an important factor in SIOP. Ferroptosis is an iron-dependent programmed cell death that differs from apoptosis, cell necrosis, and autophagy, which can be induced by many factors. Herein, we aimed to explore whether glucocorticoids (GCs) cause ferroptosis in BMSCs and determine possible treatment pathways and mechanisms of action. Melatonin (MT), a hormone secreted by the pineal gland, displays strong antioxidant abilities to scavenge free radicals and alleviates ferroptosis in many tissues and organs. MethodsIn this study, we used high-dose dexamethasone (DEX) to observe whether glucocorticoids induced ferroptosis in BMSCs. We then assessed whether MT can inhibit the ferroptotic pathway, thereby providing early protection against GC-induced SIOP, and investigated the signaling pathways involved.ResultsIn vitro experiments showed that MT intervention significantly improved GC-induced ferroptosis in BMSCs and significantly improved SIOP in vivo. Pathway analysis showed that MT improves ferroptosis by activating the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) axis. MT upregulates expression of PI3K, which is an important regulator of ferroptosis resistance. PI3K activators mimic the anti-ferroptosis effect of MT, but after blocking the PI3K pathway, the effect of MT is weakened. Obviously, MT can protect against SIOP induced by GC. Notably, even after GC-induced ferroptosis begins, MT can confer protection against SIOP. ConclusionOur research confirms that GC-induced ferroptosis is closely related to SIOP. Melatonin can inhibit ferroptosis by activating the PI3K-AKT-mTOR signaling pathway, thereby reducing the occurrence of steroid-induced osteoporosis. Therefore, MT may provide a novel strategy for preventing and treating SIOP.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
L. L. Meisner ◽  
A. I. Lotkov ◽  
V. A. Matveeva ◽  
L. V. Artemieva ◽  
S. N. Meisner ◽  
...  

The objective of the work was to study the effect of high-dose ion implantation (HDII) of NiTi surface layers with Si Ti, or Zr, on the NiTi biocompatibility. The biocompatibility was judged from the intensity and peculiarities of proliferation of mesenchymal stem cells (MSCs) on the NiTi specimen surfaces treated by special mechanical, electrochemical, and HDII methods and differing in chemical composition, morphology, and roughness. It is shown that the ion-implanted NiTi specimens are nontoxic to rat MSCs. When cultivated with the test materials or on their surfaces, the MSCs retain the viability, adhesion, morphology, and capability for proliferationin vitro, as evidenced by cell counting in a Goryaev chamber, MTT test, flow cytometry, and light and fluorescence microscopy. The unimplanted NiTi specimens fail to stimulate MSC proliferation, and this allows the assumption of bioinertness of their surface layers. Conversely, the ion-implanted NiTi specimens reveal properties favorable for MSC proliferation on their surface.


2018 ◽  
Vol 119 (9) ◽  
pp. 7667-7677 ◽  
Author(s):  
Hongyan Xu ◽  
Xinping Zhu ◽  
Wei Li ◽  
Zhoukai Tang ◽  
Yanyan Zhao ◽  
...  

2019 ◽  
Vol 130 ◽  
pp. 8-18
Author(s):  
M.N. Segunda ◽  
J. Bahamonde ◽  
I. Muñoz ◽  
S. Sepulveda ◽  
J. Cortez ◽  
...  

Blood ◽  
1999 ◽  
Vol 93 (4) ◽  
pp. 1168-1177 ◽  
Author(s):  
Minetaro Ogawa ◽  
Masami Kizumoto ◽  
Satomi Nishikawa ◽  
Tetsuhiro Fujimoto ◽  
Hiroaki Kodama ◽  
...  

Abstract Embryonic stem cells can differentiate in vitro into hematopoietic cells through two intermediate stages; the first being FLK1+ E-cadherin− proximal lateral mesoderm and the second being CD45− VE-cadherin+endothelial cells. To further dissect the CD45−VE-cadherin+ cells, we have examined distribution of 4-integrin on this cell population, because 4-integrin is the molecule expressed on hematopoietic stem cells. During culture of FLK1+ E-cadherin− cells, CD45− VE-cadherin+4-integrin− cells differentiate first, followed by 4-integrin+ cells appearing in both CD45− VE-cadherin+ and CD45−VE-cadherin− cell populations. In the CD45−VE-cadherin+ cell population, 4-integrin+ subset but not 4-integrin− subset had the potential to differentiate to hematopoietic lineage cells, whereas endothelial cell progenitors were present in both subsets. The CD45−VE-cadherin− 4-integrin+ cells also showed hematopoietic potential. Reverse transcription-polymerase chain reaction analyses showed that differential expression of the Gata2 and Myb genes correlated with the potential of the 4-integrin+ cells to give rise to hematopoietic cell differentiation. Hematopoietic CD45−VE-cadherin+ 4-integrin+ cells were also present in the yolk sac and embryonic body proper of 9.5 day postcoitum mouse embryos. Our results suggest that the expression of 4-integrin is a marker of the earliest precursor of hematopoietic cell lineage that was diverged from endothelial progenitors.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Hu Haiyan ◽  
Yang Rensong ◽  
Jin Guoqin ◽  
Zhang Xueli ◽  
Xia Huaying ◽  
...  

Stem cell-based therapy is a promising treatment strategy for neurodegenerative diseases such as Alzheimer’s disease (AD). However, the mechanism underlying the maintenance of renewal and replacement capabilities of endogenous progenitor cells or engrafted stem cells in a pathological environment remains elusive. To investigate the effect of astragaloside IV (ASI) on the proliferation and differentiation of the engrafted neural stem cells (NSCs), we cultured NSCs from the hippocampus of E14 rat embryos, treated the cells with ASI, and then transplanted the cells into the hippocampus of rat AD models.In vitroexperimentation showed that 10−5 M ASI induced NSCs to differentiate intoβ-tubulin III+and GFAP+cells. NSCs transplantation into rat AD models resulted in improvements in learning and memory, especially in the ASI-treated groups. ASI treatment resulted in an increase in the number ofβ-tubulin III+cells in the hippocampus. Further investigation showed that ASI inhibited PS1 expressionin vitroandin vivo. The high-dose ASI downregulated the Notch intracellular domain, whereas the low-dose ASI increased Notch-1 and NICD. In conclusion, ASI treatment resulted in improvements in learning and memory of AD models by promoting NSC proliferation and differentiation partly through the Notch signal pathway.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4123-4123
Author(s):  
Alberto Rocci ◽  
Irene Ricca ◽  
Chiara Della Casa ◽  
Paolo Longoni ◽  
Mara Compagno ◽  
...  

Abstract Telomere length is considered a valuable replicative capacity predictor of human hematopoietic stem cells. Indeed, a progressive telomere shortening affects hematopoietic cells upon in vitro expansion. However, less is known on the dynamics of telomere shortening in vivo following a non-physiological replicative stress. Aim of this study was to investigate markers for cellular senescence of hematopoietic cells exposed to replicative stress induced by bone marrow reconstitution following stem cell autograft. Thus, both telomere length and in vitro functional characteristics of bone marrow (BM) and peripheral blood (PB) were evaluated at long-term in subjects who had received intensive chemotherapy and autograft. Thirty-two adults with a previous diagnosis of lymphoma were examined, at a median time of 73 months (range 42–125) since autograft. They all had received a high-dose sequential chemotherapy treatment followed by peripheral blood progenitor cell (PBPC) autograft. There were 20 male and 12 female (median age at autograft: 40 yrs., range 21–60). A Southern blot procedure using a chemiluminescence-based assay was employed to determine telomere length on samples from grafted PBPC as well as on BM and PB samples obtained at long-term during follow-up. These latter samples were also studied for their in vitro growth characteristics, assessed by short and long-term culture assays. In all cases, autograft had been performed with large quantities of hematopoietic stem cells (median autografted CD34+ve cells/kg: 9.8 x 106, range 2–24), allowing a rapid and stable hematologic reconstitution. Telomere length was found slightly shorter in BM mononuclear cells from samples taken at follow-up compared to samples from grafted material (median telomere length: 6,895 bp vs 7,073 bp, respectively; p=ns). No marked differences were observed in telomere evaluation between BM and PB cells. No significant differences were observed as well when PB telomere length of follow-up samples was compared with telomere length of PB from age-related normal subjects. BM and PB samples were then assessed for their in vitro growth characteristics. Committed and stromal progenitors were grown from all samples in good though variable quantities. However, as compared to normal controls, a statistically significant reduction of marrow-derived hematopoietic progenitors (CFU-GM - BFU-E - CFU-Mix) as well as stromal progenitors (CFU-F) was observed. Additionally, the more immature LTC-IC progenitor cell compartment was dramatically reduced, both in BM and PB samples. The results indicate that: i. the proliferative stress induced by intensive chemotherapy and post-graft hematopoietic reconstitution does not imply marked telomere loss in BM and PB cells at long-term, provided that large quantities of PBPC are used for autograft; ii. stem cells present in the graft or surviving after high-dose therapy are capable of reconstituting a sufficiently adequate hematopoiesis although the committed progenitor cell compartment and even more the immature LTC-IC progenitors are persistently reduced even at up to 10 years since autograft.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4560-4560
Author(s):  
Enrico Orciuolo ◽  
Gabriele Buda ◽  
Emerenziana Marturano ◽  
Elisa Mauro ◽  
Giuseppe Milone ◽  
...  

Abstract Abstract 4560 Introduction The G-CSF, primary regulator of granulopoiesis, has shown its efficacy in reducing duration of neutropenia after chemotherapy or myelosuppressive therapy. In these situations G-CSF, accelerating the granulocytous reconstitution, may enable a significant reduction of the incidence, duration and severity of infection. Commercially formulations of rHu-G-CSF include lenograstim, a glycosylated form, and filgrastim, a non-glycosylated form. Glycosylation of the molecule contribute to pharmacokynetis advantages and to higher affinity to specific receptor. Additionally, lenograstim exposed neutrophils maintain unchanged all their functions in vitro, while filgrastim exposed neutrophils present functional defects due to higher adhesivity, cytoscheletric alterations and a more immature phenotype. Aim On these bases, we hypotized that lenograstim may prevent febrile episodes (FE) and reduce their lasting in patients with chemotherapy derived neutropenia more efficiently than filgrastim. Primary endpoint is the incidence of FE (ClinicalTrials.gov ID: NCT00932217). Patients and methods starting from April 2005, 180 multiple myeloma patients achieving high dose cyclophosphamide for stem cells mobilization were enrolled in 11 Italian Centers. Treatment plan consisted in: high dose cyclophosphamide (3 or 4 g/sqm) on day 1, G-CSF (random 1:1 on the base of a generated random list: filgrastim or lenograstim) 30 MU/day from day +4 to +9, 60 MU/day from day +10 to the achievement of an optimal CD34+ cell count for staminoapheresis. FE, significant if equal or higher than 38 °C for at least 2 different determinations, were recorded till day +30. Results 176 of 180 patients received scheduled treatment and are eligible for final analyses. All 176 patients underwent post-chemo grade 4 neutropenia and G-CSF was administered starting from day +4. FE were recorded in 26 pts, 16 in the filgrastim arm (89 total patients) and 10 in the lenograstim arm (87 total patients). The global fever incidence was 14.77%, 17.98% with filgrastim and 11.49% with lenograstim. However, to demonstrate functional block of filgrastim exposed neutrophils, FE have been related to neutrophil absolute count. Related to the neutropenia grade, 8 FE are recorded with filgrastim (8.99%) and 1 FE with lenograstim (1.15%) with absolute neutrophil count >500/μL (grade 3) (chi square test with Yates' correction: p=0.0436); this difference is still evident when neutrophils are >1000/μL (grade 2), with 7 episodes with filgrastim (7.87%) versus 1 (1.15%) with lenograstim. Conclusions Lenograstim is associated with a reduced global incidence of FE in multiple myeloma patients undergoing to high dose cyclophosphamide and stem cells mobilization when compared to filgrastim. Additionally, excluding the time frame when neutrophils are not yet recovered (neutrophils <500/μL; grade 4 neutropenia) and G-CSF effects may not be demonstrated, filgrastim treated patients present, when compared to lenograstim treated patients, an higher FE incidence at neutrophil absolute count recovery (both with grade 3 and grade 2 neutropenia), confirming the functional block of filgrastim exposed neutrophils described in vitro. On the contrary, lenograstim allows to recovery normally functional neutrophils as demonstrated by the very low incidence of FE (1.15% with neutrophils >500/μL) in treated patients. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1999 ◽  
Vol 93 (4) ◽  
pp. 1168-1177 ◽  
Author(s):  
Minetaro Ogawa ◽  
Masami Kizumoto ◽  
Satomi Nishikawa ◽  
Tetsuhiro Fujimoto ◽  
Hiroaki Kodama ◽  
...  

Embryonic stem cells can differentiate in vitro into hematopoietic cells through two intermediate stages; the first being FLK1+ E-cadherin− proximal lateral mesoderm and the second being CD45− VE-cadherin+endothelial cells. To further dissect the CD45−VE-cadherin+ cells, we have examined distribution of 4-integrin on this cell population, because 4-integrin is the molecule expressed on hematopoietic stem cells. During culture of FLK1+ E-cadherin− cells, CD45− VE-cadherin+4-integrin− cells differentiate first, followed by 4-integrin+ cells appearing in both CD45− VE-cadherin+ and CD45−VE-cadherin− cell populations. In the CD45−VE-cadherin+ cell population, 4-integrin+ subset but not 4-integrin− subset had the potential to differentiate to hematopoietic lineage cells, whereas endothelial cell progenitors were present in both subsets. The CD45−VE-cadherin− 4-integrin+ cells also showed hematopoietic potential. Reverse transcription-polymerase chain reaction analyses showed that differential expression of the Gata2 and Myb genes correlated with the potential of the 4-integrin+ cells to give rise to hematopoietic cell differentiation. Hematopoietic CD45−VE-cadherin+ 4-integrin+ cells were also present in the yolk sac and embryonic body proper of 9.5 day postcoitum mouse embryos. Our results suggest that the expression of 4-integrin is a marker of the earliest precursor of hematopoietic cell lineage that was diverged from endothelial progenitors.


Sign in / Sign up

Export Citation Format

Share Document