scholarly journals Effect of Silicon, Titanium, and Zirconium Ion Implantation on NiTi Biocompatibility

2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
L. L. Meisner ◽  
A. I. Lotkov ◽  
V. A. Matveeva ◽  
L. V. Artemieva ◽  
S. N. Meisner ◽  
...  

The objective of the work was to study the effect of high-dose ion implantation (HDII) of NiTi surface layers with Si Ti, or Zr, on the NiTi biocompatibility. The biocompatibility was judged from the intensity and peculiarities of proliferation of mesenchymal stem cells (MSCs) on the NiTi specimen surfaces treated by special mechanical, electrochemical, and HDII methods and differing in chemical composition, morphology, and roughness. It is shown that the ion-implanted NiTi specimens are nontoxic to rat MSCs. When cultivated with the test materials or on their surfaces, the MSCs retain the viability, adhesion, morphology, and capability for proliferationin vitro, as evidenced by cell counting in a Goryaev chamber, MTT test, flow cytometry, and light and fluorescence microscopy. The unimplanted NiTi specimens fail to stimulate MSC proliferation, and this allows the assumption of bioinertness of their surface layers. Conversely, the ion-implanted NiTi specimens reveal properties favorable for MSC proliferation on their surface.

2021 ◽  
Author(s):  
meng li ◽  
ning yang ◽  
li hao ◽  
wei zhou ◽  
lei li ◽  
...  

Abstract ObjectivesSteroid-induced osteoporosis (SIOP) is a secondary osteoporosis, which is a systemic bone disease characterized by low bone mass, bone microstructure damage, increased bone fragility, and easy fracture. However, the specific mechanism remains unclear. Glucocorticoid-induced death of osteoblasts and bone marrow mesenchymal stem cells (BMSCs) is an important factor in SIOP. Ferroptosis is an iron-dependent programmed cell death that differs from apoptosis, cell necrosis, and autophagy, which can be induced by many factors. Herein, we aimed to explore whether glucocorticoids (GCs) cause ferroptosis in BMSCs and determine possible treatment pathways and mechanisms of action. Melatonin (MT), a hormone secreted by the pineal gland, displays strong antioxidant abilities to scavenge free radicals and alleviates ferroptosis in many tissues and organs. MethodsIn this study, we used high-dose dexamethasone (DEX) to observe whether glucocorticoids induced ferroptosis in BMSCs. We then assessed whether MT can inhibit the ferroptotic pathway, thereby providing early protection against GC-induced SIOP, and investigated the signaling pathways involved.ResultsIn vitro experiments showed that MT intervention significantly improved GC-induced ferroptosis in BMSCs and significantly improved SIOP in vivo. Pathway analysis showed that MT improves ferroptosis by activating the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) axis. MT upregulates expression of PI3K, which is an important regulator of ferroptosis resistance. PI3K activators mimic the anti-ferroptosis effect of MT, but after blocking the PI3K pathway, the effect of MT is weakened. Obviously, MT can protect against SIOP induced by GC. Notably, even after GC-induced ferroptosis begins, MT can confer protection against SIOP. ConclusionOur research confirms that GC-induced ferroptosis is closely related to SIOP. Melatonin can inhibit ferroptosis by activating the PI3K-AKT-mTOR signaling pathway, thereby reducing the occurrence of steroid-induced osteoporosis. Therefore, MT may provide a novel strategy for preventing and treating SIOP.


2020 ◽  
Author(s):  
Yejia Yu ◽  
Mengyu Li ◽  
Yuqiong Zhou ◽  
Yueqi Shi ◽  
Wenjie Zhang ◽  
...  

Abstract Background: Dentigerous cyst (DC) is a bone destructive disease and remains a challenge for clinicians. Marsupialization enables bone to regenerate with capsules maintaining, making it a preferred therapeutic means for DC adjacent to vital anatomical structures. Given that capsules of DC derive from odontogenic epithelium remnants at embryonic stage, we investigated whether there were mesenchymal stem cells (MSCs) located in DC capsules and the role that they played in the bone regeneration after marsupialization.Methods: Samples obtained before and after marsupialization were used for histological detection and cell culture. The stemness of cells isolated from fresh tissues were analyzed by morphology, surface marker and multi-differentiation assays. Comparison of proliferation ability between Am-DCSCs and Bm-DCSCs were evaluated by Cell Counting Kit-8 (CCK-8), fibroblast colony-forming units (CFU-F) and 5’‐ethynyl‐2’‐deoxyuridine (EdU) assay. Their osteogenic capacity in vitro was detected by Alkaline phosphatase (ALP) and Alizarin Red staining (ARS), combined with Real-time polymerase chain reaction (RT-PCR) and immunofluorescence (IF) staining. Subcutaneous ectopic osteogenesis as well as cranial bone defect model in nude mice were performed to detect their bone regeneration and bone defect repair ability.Results: Bone tissue and strong ALP activity were detected in the capsule of DC after marsupialization. Two types of MSCs were isolated from fibrous capsules of DC both before (Bm-DCSCs) and after (Am-DCSCs) marsupialization. These fibroblast-like, colony forming cells expressed MSC markers (CD44+, CD90+, CD31-, CD34-, CD45-), and they could differentiate into osteoblast-, adipocyte- and chondrocyte-like cells under induction. Notably, Am-DCSCs performed better in cell proliferation and self-renewal. Moreover, Am-DCSCs showed greater osteogenic capacity both in vitro and in vivo compared with Bm-DCSCs. Conclusions: There are MSCs residing in capsules of DC, and the cell viability as well as osteogenic capacity of them are largely enhanced after marsupialization. Our findings suggested that MSCs might play a crucial role in the healing process of DC after marsupialization, thus providing new insight into the treatment for DC by promoting the osteogenic differentiation of MSCs inside capsules.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Yejia Yu ◽  
Mengyu Li ◽  
Yuqiong Zhou ◽  
Yueqi Shi ◽  
Wenjie Zhang ◽  
...  

Abstract Background Dentigerous cyst (DC) is a bone destructive disease and remains a challenge for clinicians. Marsupialization enables the bone to regenerate with capsule maintaining, making it a preferred therapeutic means for DC adjacent to vital anatomical structures. Given that capsules of DC are derived from odontogenic epithelium remnants at the embryonic stage, we investigated whether there were mesenchymal stem cells (MSCs) located in DC capsules and the role that they played in the bone regeneration after marsupialization. Methods Samples obtained before and after marsupialization were used for histological detection and cell culture. The stemness of cells isolated from fresh tissues was analyzed by morphology, surface marker, and multi-differentiation assays. Comparison of proliferation ability between MSCs isolated from DC capsules before (Bm-DCSCs) and after (Am-DCSCs) marsupialization was evaluated by Cell Counting Kit-8 (CCK-8), fibroblast colony-forming units (CFU-F), and 5′-ethynyl-2′-deoxyuridine (EdU) assay. Their osteogenic capacity in vitro was detected by alkaline phosphatase (ALP) and Alizarin Red staining (ARS), combined with real-time polymerase chain reaction (RT-PCR) and immunofluorescence (IF) staining. Subcutaneous ectopic osteogenesis as well as cranial bone defect model in nude mice was performed to detect their bone regeneration and bone defect repairability. Results Bone tissue and strong ALP activity were detected in the capsule of DC after marsupialization. Two types of MSCs were isolated from fibrous capsules of DC both before (Bm-DCSCs) and after (Am-DCSCs) marsupialization. These fibroblast-like, colony-forming cells expressed MSC markers (CD44+, CD90+, CD31−, CD34−, CD45−), and they could differentiate into osteoblast-, adipocyte-, and chondrocyte-like cells under induction. Notably, Am-DCSCs performed better in cell proliferation and self-renewal. Moreover, Am-DCSCs showed a greater osteogenic capacity both in vitro and in vivo compared with Bm-DCSCs. Conclusions There are MSCs residing in capsules of DC, and the cell viability as well as the osteogenic capacity of them is largely enhanced after marsupialization. Our findings suggested that MSCs might play a crucial role in the healing process of DC after marsupialization, thus providing new insight into the treatment for DC by promoting the osteogenic differentiation of MSCs inside capsules.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Gökhan Ertaş ◽  
Ertan Ural ◽  
Dilek Ural ◽  
Ayça Aksoy ◽  
Güliz Kozdağ ◽  
...  

Aim. Mesenchymal stem cells (MSCs) isolated from human bone marrow (hBM) and adipose tissue (hAT) are perceived as attractive sources of stem cells for cell therapy. The aim of this study was to compare MSCs from hBM and hAT for their immunocytochemistry staining and resistance to in vitro apoptosis. Methods. In our study, we investigated the antiapoptotic ability of these MSCs toward oxidative stress induced by hydrogen peroxide (H2O2) and serum deprivation. Results were assessed by MTT and flow cytometry. All experiments were repeated a minimum of three times. Results. Flow cytometry and MTT analysis revealed that hAT-MSCs exhibited a higher resistance toward H2O2-induced apoptosis (n=3, hBM-hAT viability H2O2  58.43±1.24–73.02±1.44, P<0.02) and to serum-deprivation-induced apoptosis at days 1 and 4 than the hBM-MSCs (n=3, hAT-hBM absorbance, resp., day 1: 0.305±0.027–0.234±0.015, P=0.029, day 4: 0.355±0.003–0.318±0.007, P=0.001, and day 7: 0.400±0.017–0.356±0.008, P=0.672). hAT-MSCs showed superior tolerance to oxidative stress triggered by 2 mmol/L H2O2 and also have superior antiapoptosis capacity toward serum-free culture. Conclusion. In this study we found that hAT-MSCs are more resistant to in vitro apoptosis.


2016 ◽  
Vol 38 (1) ◽  
pp. 401-414 ◽  
Author(s):  
Wei Wang ◽  
Xueyong Liu ◽  
Wei Wang ◽  
Jinghua Li ◽  
Yuanyuan Li ◽  
...  

Background/Aims: Indoxyl sulfate, an important protein-bound uremic toxin, can damage stem cells, thus hampering stem cell-based regenerative medicine approaches targeting chronic kidney diseases (CKD). Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) are thought to have promising clinical application because of their high proliferative potential and ease of isolation than MSCs from other sources. In the present study, we aimed to determine the harmful effects of indoxyl sulfate on the phenotype and functional potential of hUC-MSCs in vitro. Methods: The toxicity and cell viability was examined by Trypan blue exclusion and MTT assay. The cellular surface markers and the percentage of apoptotic cells by Annexin-V/PI staining were analyzed by flow cytometry. Proliferation was evaluated based on cell number counting and Ki-67 immunostaining. Cell senescence was measured using senescence-associated β-Galactosidase activity. The ability to stimulate the development of CD4+CD25+FoxP3+ regulatory T cells was assessed by incubating hUC-MSCs with peripheral blood mononuclear cells from the healthy volunteers. Results: Our results demonstrated that the immunophenotype of hUC-MSCs was not affected by indoxyl sulfate flow cytometry. However, a significant decrease in cell numbers and fraction of Ki-67 positive proliferating cells, along with a significant increase in cellular senescence were detected in hUC-MSCs after exposure to indoxyl sulfate. Additionally, their ability to stimulate CD4+CD25+FoxP3+ regulatory T cell production was compromised when hUC-MSCs were pretreated with indoxyl sulfate. Conclusion: Taken together, our study clearly demonstrated that the molecular alterations and functional incompetence in hUC-MSCs under the challenge of indoxyl sulfate in vitro.


2009 ◽  
Vol 69 (2) ◽  
pp. 450-457 ◽  
Author(s):  
E Jones ◽  
S M Churchman ◽  
A English ◽  
M H Buch ◽  
E A Horner ◽  
...  

Objective:Achieving joint regeneration in rheumatoid arthritis (RA) represents a future challenge. Autologous synovial mesenchymal stem cells (MSCs) could be therapeutically exploited. However, the inflammatory milieu in the RA synovium could adversely affect endogenous MSC function. To test this hypothesis, the frequency and multipotency of RA synovial MSCs was evaluated in relation to existing synovial inflammation.Methods:Synovial inflammation was measured using the arthroscopic visual analogue score (VAS) and further validated using immunohistochemistry and flow cytometry. Highly proliferative clonogenic in vivo MSCs were enumerated following fluorescence-activated cell sorting and expansion for 20 population doublings. MSC multipotency was quantified following standard in vitro culture expansion and trilineage differentiation assays. Real-time PCR, flow cytometry and ELISA were used to evaluate pro- and anti-chondrogenic molecules in standard polyclonal synovial MSCs.Results:The arthroscopic VAS significantly correlated with synovial macrophage infiltration. In RA, synovial MSC chondrogenesis was inhibited in direct relation to VAS (r = −0.777, p<0.05) and reduced compared with control osteoarthritis (OA)-MSCs (p<0.05). In vivo, MSCs resided in the synovial fibroblastic/stromal fraction (CD45−CD31−) and were reduced in frequency in relation to VAS (r = −0.695, p<0.05). In RA-MSCs, CD44 levels correlated negatively with inflammation and positively with chondrogenesis (r = −0.830 and r = 0.865, respectively). Cytokine production and Sox9 expression was similar in RA-MSCs and OA-MSCs.Conclusions:There is a negative relationship between synovial MSC chondrogenic and clonogenic capacities and the magnitude of synovitis in RA. Effective suppression of joint inflammation is therefore necessary for the development of autologous MSC treatments aimed at cartilage regeneration in RA.


2018 ◽  
Vol 5 (4) ◽  
pp. 31 ◽  
Author(s):  
Maryam Samareh Salavati Pour ◽  
Fatemeh Hoseinpour Kasgari ◽  
Alireza Farsinejad ◽  
Ahmad Fatemi ◽  
Roohollah Mirzaee Khalilabadi

Introduction: Mesenchymal stem cells (MSCs) are widely studied due to their self- renewal potential and capacity to differentiate into multiple tissues. However, they have a limited life span of several divisions in vitro, which alters various cellular characteristics and reduces their application. Aim: We evaluated the effect of platelet-derived microparticles on gene expression of hTERT, one of the main factors involved in aging and cell longevity. Materials and methods: Umbilical cord MSCs were used for this study. Cells were characterized by evaluating morphology via inverted microscope and identifying associated surface markers using flow cytometry. Platelet-derived microparticles were prepared by centrifuging platelet bags at varying speeds, and their concen- trations were determined by Bradford assay. At 30% confluency, MSCs were treated with 50 μg/mL of microparticles for five days. Then, RNA was extracted and cDNA was synthesized. Quantitative expression of hTERT was assessed using real-time polymerase chain reaction (PCR). Results: Fibroblast-like cells were isolated from umbilical cord tissue and MSCs were identified by the presence of mesenchymal surface markers via flow cytometry. Real- time PCR showed that gene expression of hTERT increased by more than three times when treated with platelet-derived microparticles, in comparison to expression of the control group. Conclusion: We concluded that platelet-derived microparticles may be a potentially safe and effective method to increase hTERT gene expression in MSCs, ultimately prolonging their life span in vitro. 


2020 ◽  
Author(s):  
Safiye Aktas ◽  
Yuksel Olgun ◽  
Hande Evin ◽  
Ayse Pinar Ercetin ◽  
Tekincan Cagri Aktas ◽  
...  

ABSTRACTHigh-dose cisplatin (CDDP) causes dose-limiting side effects in neuroblastoma (NB) treatment. Mesenchymal stem cells (MSC) are a current research area in cellular treatments due to multipotential characteristics. The aim of this study is to assess the interaction of MSC with CDDP in an athymic nude mouse NB model. Athymic male nude mice (n=28) were injected subcutaneously with C1300 NB cell line. After tumor growth to 1 cm diameter in 7-10 days, mice were randomly assigned to one of 4 experimental groups of control, CDDP treatment, MSC treatment and CDDP+MSC treatment with 7 mice in each group. Animals had basal auditory tests performed and had physiological serum or CDDP (20 mg/kg) injected into the peritoneum and were intravenously injected with 1×105 MSC once. Seven days later, hearing tests were performed again and the animals were sacrificed. Tumor tissue was assessed in terms of necrosis, apoptosis and viability. Apoptosis was evaluated with annexin V+PI flow cytometry analysis and TUNEL. Additionally, the MSC rate within the tumor was assessed with flow cytometry for triple CD34+ CD44+ and CD117-expression. Additionally, liver, kidney, brain and cochlear tissue were analyzed with light microscopy in terms of systemic side effect profile. Expression of the cochlear cell proteins of calretinin, math-1 and myosin2A were immunohistochemically assessed in ear sections. Statistical analysis used the nonparametric Kruskal Wallis and Mann Whitney U tests with p<0.05 significance. Tumor tissues were found to have statistically significantly higher levels of necrosis in the CDDP group and CDDP+MSC group compared to the control and MSC groups (p=0.001, p=0.006). The CDDP+MSC group had lower tumor necrosis rates than the CDDP group but this was not observed to have statistical significance (p=0.05). MSC did not change the tumor dimensions in the CDDP group (p=0.557). The groups administered MSC had higher triple CD34+ CD44+ and CD117- expression within tumor tissue compared to the control and CDDP groups. In the inner ear, the expression of cochlear cell proteins calretinin, math-1 and myosin2A were identified to be highest in the groups administered MSC. Auditory tests observed that the 15-decibel loss at 12, 16, 20 and 32 kHz frequencies in both ears with CDDP was resolved with MSC administration. With this study, IV administration of MSC treatment was observed to prevent the hearing loss caused by CDDP without disrupting the antitumor effect of CDDP. Systemic MSC may be assessed for clinical use to reduce the side effects of CDDP.


2021 ◽  
Vol 37 ◽  
pp. e37002
Author(s):  
Gustavo Cardoso da Silva Neves ◽  
Napoleão Martins Argôlo Neto ◽  
Maíra Soares Ferraz ◽  
Clautina Ribeiro de Moraes Da Costa ◽  
Andressa Rêgo Da Rocha ◽  
...  

Mesenchymal stem cells (MSCs), obtained from several anatomical sites, have already been described, characterized and used in therapeutic models for tissue repair. The umbilical cord mesenchymal stem cells, represented by cells from arteries and veins walls, as well as Wharton's jelly are easy to be obtained, highly available, require no invasive procedure, do not present risk to donors and do not present ethical limitation. The aim of this research was to analyze the plasticity of Wharton's jelly mesenchymal stem cells (WJ-MSCs) of goat, evaluating their behavior in vitro and characterizing them immunophenotypically. Thus, tests were performed on colony forming units, viability and cell growth curve, flow cytometry analysis and plasticity potential. Goat umbilical cord matrix cells exhibited fibroblastoid morphology with colony formation and self-renewal ability, always maintaining their undifferentiated state up to the eighth passage (P8). The growth curve kinetics exhibited the LAG, LOG, and DECAY phases, without displaying a PLATEAU phase. The plasticity assay demonstrated positive differentiation for osteogenic, adipogenic and chondrogenic lines, characterized by the synthesis of intracytoplasmic granules or extracellular matrix with the presence of calcium, lipids and proteoglycans. Flow cytometry demonstrated the expression of CD90 and CD105; absence of CD14 expression.  It is concluded that the cell population isolated from the Wharton's  jelly of goat constitutes a representative sample of mesenchymal stem cells, with great possibilities in the field of regenerative and reproductive medicine.


2020 ◽  
Author(s):  
Yejia Yu ◽  
Mengyu Li ◽  
Yuqiong Zhou ◽  
Yueqi Shi ◽  
Wenjie Zhang ◽  
...  

Abstract Background: Dentigerous cyst (DC) is a bone destructive disease and remains a challenge for clinicians. Marsupialization enables bone to regenerate with capsules maintaining, making it a preferred therapeutic means for DC adjacent to vital anatomical structures. Given that capsules of DC derive from odontogenic epithelium remnants at embryonic stage, we investigated whether there were mesenchymal stem cells (MSCs) located in DC capsules and the role that they played in the bone regeneration after marsupialization. Methods: Samples obtained before and after marsupialization were used for histological detection and cell culture. The stemness of cells isolated from fresh tissues were analyzed by morphology, surface marker and multi-differentiation assays. Comparison of proliferation ability between Am-DCSCs and Bm-DCSCs were evaluated by Cell Counting Kit-8 (CCK-8), fibroblast colony-forming units (CFU-F) and 5’‐ethynyl‐2’‐deoxyuridine (EdU) assay. Their osteogenic capacity in vitro was detected by Alkaline phosphatase (ALP) and Alizarin Red staining (ARS), combined with Real-time polymerase chain reaction (RT-PCR) and immunofluorescence (IF) staining. Subcutaneous ectopic osteogenesis as well as cranial bone defect model in nude mice were performed to detect their bone regeneration and bone defect repair ability. Results: Bone tissue and strong ALP activity were detected in the capsule of DC after marsupialization. Two types of MSCs were isolated from fibrous capsules of DC both before (Bm-DCSCs) and after (Am-DCSCs) marsupialization. These fibroblast-like, colony forming cells expressed MSC markers (CD44+, CD90+, CD31-, CD34-, CD45-), and they could differentiate into osteoblast-, adipocyte- and chondrocyte-like cells under induction. Notably, Am-DCSCs performed better in cell proliferation and self-renewal. Moreover, Am-DCSCs showed greater osteogenic capacity both in vitro and in vivo compared with Bm-DCSCs. Conclusions: There are MSCs residing in capsules of DC, and the cell viability as well as osteogenic capacity of them are largely enhanced after marsupialization. Our findings suggested that MSCs might play a crucial role in the healing process of DC after marsupialization, thus providing new insight into the treatment for DC by promoting the osteogenic differentiation of MSCs inside capsules.


Sign in / Sign up

Export Citation Format

Share Document