scholarly journals Whey-Derived Peptides Interactions with ACE by Molecular Docking as a Potential Predictive Tool of Natural ACE Inhibitors

2020 ◽  
Vol 21 (3) ◽  
pp. 864 ◽  
Author(s):  
Yara Chamata ◽  
Kimberly A. Watson ◽  
Paula Jauregi

Several milk/whey derived peptides possess high in vitro angiotensin I-converting enzyme (ACE) inhibitory activity. However, in some cases, poor correlation between the in vitro ACE inhibitory activity and the in vivo antihypertensive activity has been observed. The aim of this study is to gain insight into the structure-activity relationship of peptide sequences present in whey/milk protein hydrolysates with high ACE inhibitory activity, which could lead to a better understanding and prediction of their in vivo antihypertensive activity. The potential interactions between peptides produced from whey proteins, previously reported as high ACE inhibitors such as IPP, LIVTQ, IIAE, LVYPFP, and human ACE were assessed using a molecular docking approach. The results show that peptides IIAE, LIVTQ, and LVYPFP formed strong H bonds with the amino acids Gln 259, His 331, and Thr 358 in the active site of the human ACE. Interestingly, the same residues were found to form strong hydrogen bonds with the ACE inhibitory drug Sampatrilat. Furthermore, peptides IIAE and LVYPFP interacted with the amino acid residues Gln 259 and His 331, respectively, also in common with other ACE-inhibitory drugs such as Captopril, Lisinopril and Elanapril. Additionally, IIAE interacted with the amino acid residue Asp 140 in common with Lisinopril, and LIVTQ interacted with Ala 332 in common with both Lisinopril and Elanapril. The peptides produced naturally from whey by enzymatic hydrolysis interacted with residues of the human ACE in common with potent ACE-inhibitory drugs which suggests that these natural peptides may be potent ACE inhibitors.

Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4635
Author(s):  
Samuchaya Ngamsuk ◽  
Tzou-Chi Huang ◽  
Jue-Liang Hsu

Gac (Momordica cochinchinensis Spreng.) seed proteins (GSPs) hydrolysate was investigated for angiotensin I-converting enzyme (ACE) inhibitory activities. GSPs were hydrolyzed under simulated gastrointestinal digestion using a combination of enzymes, including pepsin, trypsin, and chymotrypsin. The screening of ACE inhibitory peptides from GSPs hydrolysate was performed using two sequential bioassay-guided fractionations, namely hydrophilic interaction liquid chromatography (HILIC) and reversed-phase high-performance liquid chromatography (RP-HPLC). Then, the peptides in the fraction with the highest ACE inhibitory activity were identified by LC-MS/MS. The flow-through (FT) fraction showed the most potent ACE inhibitory activity when HILIC fractionation was performed. This fraction was further separated using RP-HPLC, and the result indicated that fraction 8 (RP-F8) showed the highest ACE inhibitory activity. In the HILIC-FT/RP-F8 fraction, 14 peptides were identified using LC-MS/MS analysis coupled with de novo sequencing. These amino acid chains had not been recorded previously and their ACE inhibitory activities were analyzed in silico using the BIOPEP database. One fragment with the amino acid sequence of ALVY showed a significant ACE inhibitory activity (7.03 ± 0.09 µM). The Lineweaver-Burk plot indicated that ALVY is a competitive inhibitor. The inhibition mechanism of ALVY against ACE was further rationalized through the molecular docking simulation, which revealed that the ACE inhibitory activities of ALVY is due to interaction with the S1 (Ala354, Tyr523) and the S2 (His353, His513) pockets of ACE. Bibliographic survey allowed the identification of similarities between peptides reported as in gac fruit and other proteins. These results suggest that gac seed proteins hydrolysate can be used as a potential nutraceutical with inhibitory activity against ACE.


2007 ◽  
Vol 74 (3) ◽  
pp. 336-339 ◽  
Author(s):  
Blanca Hernández-Ledesma ◽  
Marta Miguel ◽  
Lourdes Amigo ◽  
Maria Amaya Aleixandre ◽  
Isidra Recio

In this study, the antihypertensive activity in spontaneously hypertensive rats of two peptides isolated from β-lactoglobulin hydrolysates with thermolysin was evaluated. These peptides, with sequences LLF [β-lg f(103–105)] and LQKW [β-lg f(58–61)], showed potent in vitro ACE-inhibitory activity. Two hours after administration, both sequences caused a clear and significant decrease in the blood pressure of these rats. The impact of a simulated gastrointestinal digestion on ACE-inhibitory and antihypertensive activities of these peptides was also studied. The results showed that both fragments were susceptible to proteolytic degradation after incubation with pepsin and Corolase PP®. In addition, their in vitro ACE-inhibitory activity decreased after the simulated digestion. It is likely that fragment LQK was the active end product of the gastrointestinal digestion of peptide LQKW. The fragment LL, observed after digestion of peptide LLF, probably exert its antihypertensive effect through a mechanism of action different than ACE-inhibition.


2020 ◽  
Vol 21 (3) ◽  
pp. 1059 ◽  
Author(s):  
Ruidan Wang ◽  
Xin Lu ◽  
Qiang Sun ◽  
Jinhong Gao ◽  
Lin Ma ◽  
...  

The aim of this study was to isolate and identify angiotensin I-converting enzyme (ACE) inhibitory peptides from sesame protein through simulated gastrointestinal digestion in vitro, and to explore the underlying mechanisms by molecular docking. The sesame protein was enzymatically hydrolyzed by pepsin, trypsin, and α-chymotrypsin. The degree of hydrolysis (DH) and peptide yield increased with the increase of digest time. Moreover, ACE inhibitory activity was enhanced after digestion. The sesame protein digestive solution (SPDS) was purified by ultrafiltration through different molecular weight cut-off (MWCO) membranes and SPDS-VII (< 3 kDa) had the strongest ACE inhibition. SPDS-VII was further purified by NGC Quest™ 10 Plus Chromatography System and finally 11 peptides were identified by Nano UHPLC-ESI-MS/MS (nano ultra-high performance liquid chromatography-electrospray ionization mass spectrometry/mass spectrometry) from peak 4. The peptide GHIITVAR from 11S globulin displayed the strongest ACE inhibitory activity (IC50 = 3.60 ± 0.10 μM). Furthermore, the docking analysis revealed that the ACE inhibition of GHIITVAR was mainly attributed to forming very strong hydrogen bonds with the active sites of ACE. These results identify sesame protein as a rich source of ACE inhibitory peptides and further indicate that GHIITVAR has the potential for development of new functional foods.


2015 ◽  
Vol 11 (5) ◽  
pp. 659-665
Author(s):  
Tuba Erkaya ◽  
Aykut Öztekin ◽  
Hasan Özdemir ◽  
Mustafa Şengül

Abstract Angiotensin converting enzyme (ACE)-inhibitory activity in water soluble extracts (WSEs) of kefir was investigated. Kefir was produced traditionally using kefir grains and stored at refrigerated temperature for 20 days. During storage period (on 1, 5, 10, 15 and 20 days) in vitro ACE-inhibitory activity in WSEs was determined. ACE was purified from human plasma to determine kinetic parameters. Purified ACE had a specific activity of 20.75 EU.mg−1, a yield of 16.6% with a factor of 22100. The inhibition effects of kefir on ACE increased at 15 storage days than other storage days. Some microbiological and physicochemical characteristics of kefir were also studied. Counts of presumptive LAB on M-17 and presumptive LAB on MRS in the kefir were about 108 CFU.ml−1 throughout the storage period. Yeast counts were lower than lactic acid bacteria counts and the average of the counts was approximately 106 log CFU.ml−1. Storage period had a significant effect (P < 0.05) on titratable acidity and pH values. On the contrary, it had no significant effect (P > 0.05) on viscosity and serum separation values of kefir.


Fermentation ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 215
Author(s):  
Jessica Lizbeth Sebastián-Nicolas ◽  
Elizabeth Contreras-López ◽  
Juan Ramírez-Godínez ◽  
Alma Elizabeth Cruz-Guerrero ◽  
Gabriela Mariana Rodríguez-Serrano ◽  
...  

Health benefits of probiotics and production of inhibitors of angiotensin converting enzyme (ACE) released during milk fermentation are well known. That is why in this investigation the proteolytic profile and ACE inhibitory capacity of peptide fractions from protein hydrolysis of milk during fermentation processes was analyzed. Milk fermentation was carried out inoculating 106 CFU of L. rhamnosus GG, S. thermophilus SY-102 and with both bacteria. The proteolytic profile was determined using: TNBS, SDS-PAGE and SEC-HPLC techniques. In vitro ACE inhibition capacity was measured. The pH of 4.5 was reached at 56 h when the milk was fermented with L. rhamnosus, at 12 h with S. thermophillus and at 41 h in the co-culture. Production of free amino groups corresponded with the profile of low molecular weight peptides observed by SDS-PAGE and SEC-HPLC. Co-culture fermentation showed both the highest concentration of low molecular weight peptides and the ACE inhibitory activity (>80%). Results indicated that the combination of lactic cultures could be useful in manufacture of fermented milk with an added value that goes beyond basic nutrition, such as the production of ACE-inhibitory peptides.


Sign in / Sign up

Export Citation Format

Share Document