scholarly journals A Small Number of HER2 Redirected CAR T Cells Significantly Improves Immune Response of Adoptively Transferred Mouse Lymphocytes against Human Breast Cancer Xenografts

2020 ◽  
Vol 21 (3) ◽  
pp. 1039 ◽  
Author(s):  
Gábor Tóth ◽  
János Szöllősi ◽  
Hinrich Abken ◽  
György Vereb ◽  
Árpád Szöőr

HER2 positive JIMT-1 breast tumors are resistant to trastuzumab treatment in vitro and develop resistance to trastuzumab in vivo in SCID mice. We explored whether these resistant tumors could still be eliminated by T cells redirected by a second-generation chimeric antigen receptor (CAR) containing a CD28 costimulatory domain and targeting HER2 with a trastuzumab-derived scFv. In vitro, T cells engineered with this HER2 specific CAR recognized HER2 positive target cells as judged by cytokine production and cytolytic activity. In vivo, the administration of trastuzumab twice weekly had no effect on the growth of JIMT-1 xenografts in SCID mice. At the same time, a single dose of 2.5 million T cells from congenic mice exhibited a moderate xenoimmune response and even stable disease in some cases. In contrast, when the same dose contained 7% (175,000) CAR T cells, complete remission was achieved in 57 days. Even a reduced dose of 250,000 T cells, including only 17,500 CAR T cells, yielded complete remission, although it needed nearly twice the time. We conclude that even a small number of CAR T lymphocytes can evoke a robust anti-tumor response against an antibody resistant xenograft by focusing the activity of xenogenic T cells. This observation may have significance for optimizing the dose of CAR T cells in the therapy of solid tumors.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 12-12 ◽  
Author(s):  
Nikhil Hebbar ◽  
Rebecca Epperly ◽  
Abishek Vaidya ◽  
Sujuan Huang ◽  
Cheng Cheng ◽  
...  

Finding the ideal immunotherapy target for AML has proven challenging and is limited by overlapping expression of antigens on hematopoietic progenitor cells (HPCs) and AML blasts. Intracellular Glucose-regulated-protein 78 (GRP78) is a key UPR regulator, which normally resides in the endoplasmic reticulum (ER). GRP78 is overexpressed and translocated to the cell surface in a broad range of solid tumors and hematological malignancies in response to elevated ER stress, making it an attractive target for immune-based therapies with T cells expressing chimeric antigen receptors (CARs). The goal of this project was to determine the expression of GRP78 on pediatric AML samples, generate GRP78-CAR T cells, and evaluate their effector function against AML blasts in vitro and in vivo. To demonstrate overexpression of GRP78 in AML, we performed gene expression analysis by RNAseq on a cohort of cord blood CD34+ cell samples (N=5) and 74 primary AML samples. Primary AML samples included RUNX1-RUNX1T1 (N=7), CBFB-MYH11(N=17), KMT2A rearrangement (N=28) and NUP98 (N=22). Analysis showed increased GRP78 expression in AML samples, especially in KMT2A- and NUP98-rearranged AML. To demonstrate surface expression of GRP78, we performed flow cytometry of AML (Kg1a, MOLLM13, THP-1, MV4-11) cell lines as well as 11 primary AML samples and 5 PDX samples; non transduced (NT) T cells served as control. All AML samples, including cell lines, primary AML blasts, and PDX samples, showed increased expression of GRP78 on their cell surface in comparison to NT T cells We then designed a retroviral vector encoding a GRP78-CAR using a GRP78-specific peptide as an antigen recognition domain, and generated GRP78-CAR T cells by retroviral transduction of primary human T cells. Median transduction efficiency was 82% (± 5-8%, N=6), and immunophenotypic analysis showed a predominance of naïve and terminal effector memory subsets on day 7 after transduction (N=5). To determine the antigen specificity of GRP78-CAR T cells, we performed coculture assays in vitro with cell surface GRP78+ (AML cell lines: MOLM13, MV-4-11, and THP-1 and 3 AML PDX samples) or cell surface GRP78- (NT T cells) targets. T cells expressing CARs specific for HER2-, CD19-, or a non-functional GRP78 (DGRP78)-CAR served as negative controls. GRP78-CAR T cells secreted significant amounts of IFNg and IL-2 only in the presence of GRP78+ target cells (N=3, p<0.005); while control CAR T cells did not. GRP78-CAR T cells only killed GRP78+ target cells in standard cytotoxicity assays confirming specificity. To test the effects of GRP78-CAR T cells on normal bone marrow derived HPCs, we performed standard colony forming unit (CFU) assays post exposure to GRP78-CAR or NT T cells (effector to target (E:T) ratio 1:1 and 5:1) and determined the number of BFU-E, CFU-E, CFU-GM, and CFU-GEMM. No significant differences between GRP78-CAR and NT T cells were observed except for CFU-Es at an E:T ratio of 5:1 that was not confirmed for BFU-Es. Finally, we evaluated the antitumor activity of GRP78-CAR T cells in an in vivo xenograft AML model (MOLM13). Tumor growth was monitored by serial bioluminescence imaging. A single intravenous dose of GRP78-CAR T cells induced tumor regression, which resulted in a significant (p<0.001) survival advantage in comparison to mice that had received control CAR T cells. In conclusion, GRP78 is expressed on the cell surface of AML. GRP78-CAR T cells have potent anti-AML activity in vitro and in vivo and do not target normal HPCs. Thus, our cell therapy approach warrants further active exploration and has the potential to improve outcomes for patients with AML. Disclosures Hebbar: St. Jude: Patents & Royalties. Epperly:St. Jude: Patents & Royalties. Vaidya:St. Jude: Patents & Royalties. Gottschalk:TESSA Therapeutics: Other: research collaboration; Inmatics and Tidal: Membership on an entity's Board of Directors or advisory committees; Merck and ViraCyte: Consultancy; Patents and patent applications in the fields of T-cell & Gene therapy for cancer: Patents & Royalties. Velasquez:St. Jude: Patents & Royalties; Rally! Foundation: Membership on an entity's Board of Directors or advisory committees.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Zhenhui Zhao ◽  
Yan Li ◽  
Wei Liu ◽  
Xun Li

Triple-negative breast cancer (TNBC) is a very aggressive malignant type of tumor that currently lacks effective targeted therapies. In hematological malignancies, chimeric antigen receptor T (CAR-T) cells have shown very significant antitumor ability; however, in solid tumors, the efficacy is poor. In order to apply CAR-T cells in the treatment of TNBC, in this study, constitutively activated IL-7 receptor (C7R) that has been reported is used to enhance the antitumor function of constructed CAR-T cells by ourselves. Using in vitro coincubation experiments with target cells and in vivo antitumor experiments in mice, we found that the coexpressed C7R can significantly improve the activation, cell proliferation, and cytotoxicity of CAR-T cells. In addition, the in vivo experiments suggested that the enhanced CAR-T cells displayed significant antitumor activity in a TNBC subcutaneous xenograft model, in which in vivo, the survival time of CAR-T cells was prolonged. Together, these results indicated that CAR-T cells that coexpress C7R may be a novel therapeutic strategy for TNBC.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5812-5812
Author(s):  
Alla Dolnikov ◽  
Swapna Rossi ◽  
Ning Xu ◽  
Guy Klamer ◽  
Sylvie Shen ◽  
...  

Abstract T cells modified to express CD19-specific chimeric antigen receptors (CAR) have shown anti-tumour efficacy in early phase clinical trials in patients with relapsed and refractory B-cell malignancies. In addition to direct cytotoxicity, chemotherapeutic drugs can have an immunomodulatory effect both through enhancing the tumour-specific immune response and increasing the tumour’s susceptibility to immune mediated destruction. Hence, combining immunomodulatory chemotherapy and CAR T-cells is an attractive approach for eliminating tumours, particularly in advanced stages. 5-aza-2'-deoxycytidine (5-AZA) is a hypomethylating agent that induces terminal differentiation, senescence or apoptosis in haematological malignancies. Here, we have explored a CAR-based immunotherapy combined with 5-AZA to maximise the effect of the CAR T-cells against CD19+ B-cell leukaemia. A second generation CAR including CD3zeta and the CD28 co-stimulatory domain was cloned into the PiggyBac-transposon vector and was used to generate CAR19 -T cells. Cord blood -derived mononuclear cells (MNC) were transfected with CAR19-transposon/transposase plasmids and expanded with CD3/28 beads for 2 weeks in the presence of 20ng/ml IL2 and 10ng/ml IL7. CAR19 T-cells efficiently induced cytolysis of CD19+ leukaemia cells in vitro and exhibited anti-tumour activity in vivo in a xenograft mouse model of leukaemia. Pre-treatment with 5-AZA produced greater leukaemia cell cytolysis in vitro and maximised anti-tumour activity of CAR19 T-cells in vivo against xenograft primary leukaemia compared to 5-AZA or CAR19 T-cells alone. In vitro analysis revealed that pre-treatment with 5-AZA up-regulates CD19 expression in leukaemia cells and improves CAR19 T-cell recognition of target cells increasing the formation of effector/ target cell conjugates and target cell cytolysis. Therefore using 5-AZA pre-treatment can be particularly useful for B-cell leukaemias with reduced expression of CD19. We have also demonstrated that pre-treatment of target cells with 5-AZA potentiates the effect of CAR19 T-cells used at low dose or low effector:target (E:T) suggesting that even small numbers of CAR19 T-cells can mediate a potent antitumor effect when combined with 5-AZA pre-treatment of target cells. This is particularly important for patients receiving limited numbers of CAR T-cells or for patients with large leukaemic burden. In addition, we speculate that the enhanced cellular cytotoxicity produced by 5-AZA-conditioning may allow the infusion of decreased numbers of CAR19 T-cells. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A115-A116
Author(s):  
Emiliano Roselli ◽  
Justin Boucher ◽  
Gongbo Li ◽  
Hiroshi Kotani ◽  
Kristen Spitler ◽  
...  

BackgroundCo-stimulatory signals regulate the expansion, persistence, and function of chimeric antigen receptor (CAR) T cells. Most studies have focused on the co-stimulatory domains CD28 or 4-1BB. CAR T cell persistence is enhanced by 4-1BB co-stimulation leading to NF-κB signaling, while resistance to exhaustion is enhanced by mutations of the CD28 co-stimulatory domain.MethodsWe hypothesized that a third-generation CAR containing 4-1BB and CD28 with only PYAP signaling motif (mut06) would provide beneficial aspects of both. We designed CD19-specific CAR T cells with 4-1BB or mut06 together with the combination of both (BB06). We evaluated their immune-phenotype, cytokine secretion, real-time cytotoxic ability and polyfunctionality against CD19-expressing cells. We analyzed LCK recruitment by the different constructs by immunoblotting. We further determined their ability to control growth of Raji cells in NSG mice. Additionally, we engineered bi-specific CARs against CD20/CD19 combining 4-1BB and mut06 and performed repeated in vitro antigenic stimulation experiments to evaluate their expansion, memory phenotype and phenotypic (PD1+CD39+) and functional exhaustion. Bi-specific CAR T cells were transferred into Raji or Nalm6-bearing mice to study their ability to eradicate CD20/CD19-expressing tumors.ResultsCo-stimulatory domains combining 4-1BB and mut06 confers CAR T cells with an increased polyfunctionality and LCK recruitment to the CAR (figure 1A), after repeated-antigen stimulation these cells expanded significantly better than second-generation CAR T cells (figure 1B). A bi-specific CAR targeting CD20/CD19, incorporating 4-1BB and mut06 co-stimulation, showed enhanced antigen-dependent in vitro expansion with lower exhaustion-associated markers (figure 1C). Bi-specific CAR T cells exhibited improved in vivo anti-tumor activity with increased persistence and decreased exhaustion (figure 1D).Abstract 105 Figure 1A. pLCK is increased in h19BB06z CAR T cells and associated with the CAR. CAR T cells were stimulated with irradiated 3T3-hCD19 cells at a 10:1 E:T ratio for 24hr. Cells were lysed and CAR bound and unbound fractions were western blotted. A single-cell measure of polyfunctional strength index (PSI) of CAR T cells. B. h19BB06z CAR T cells have the highest proliferation after repeated antigen stimulations. 5x105 CAR T cells were stimulated with 1x105 irradiated 3T3-hCD19 cells. After 1 week, half of the cells were enumerated by flow cytometry and the other half was re-stimulated with 1x105 fresh irradiated 3T3-hCD19 cells. This was repeated for a total of 4 weeks. C. 5x105 CAR T cells were co-cultured with 5x105 target cells (Raji-CD19High). After 1 week half the cells were harvested enumerated and stained by flow cytometry while the other half was re-stimulated with 5x105 fresh target cells (indicated by arrows). This was repeated for a total of 4 weeks. Frequency of PD1+CD39+ cells within CD8+ CAR T cells. D. Raji-FFLuc-bearing NSG mice were treated with 1x106 CAR T cells 5 days after initial tumor cell injection. Tumor burden (average luminescence) of mice treated with bi-specific or monospecific CAR T cells, UT and tumor control. Each line represents an individual mouse. (n = 7 mice per group).ConclusionsThese results demonstrate that co-stimulation combining 4-1BB with an optimized form of CD28 is a valid approach to optimize CAR T cell function. Cells with both mono- and bi-specific versions of this design showed enhanced in vitro and in vivo features such as expansion, persistence and resistance to exhaustion. Our observations validate the approach and justify clinical studies to test the efficacy and safety of this CAR in patients.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1700-1700
Author(s):  
Zhe (joy) Zhou ◽  
Yue Han ◽  
Hong-Bo Pan ◽  
Cai-Jun Sang ◽  
Dong-Lin Shi ◽  
...  

Abstract Introduction: Anti-CD19 CAR-T therapy has achieved remarkable treatment efficacy in B cell lymphoma. However, targeting CD19 antigen alone can only benefit about half of patients with B cell malignancies. The FDA-approved CD19 CAR-T therapies all use same binder, which is murine FMC63 scFv targeting CD19 and up to 39%-88% of patients have relapsed. Possible mechanisms of relapse include mutations or downregulation of the targeted antigen, CD19, however, the targetable expression of CD20 and CD22 is preserved. In addition, immunogenicity against murine FMC63 scFv could have a negative impact on possible re-dosing regimen. To overcome these limitations, we designed and developed a novel tri-specific VHH CAR-T, targeting three antigens that include CD19, CD20 and CD22, for treating patients who relapsed from prior CAR-T therapies. Methods: We engineered mono-, bi-, or tri-specific VHH CAR constructs targeting CD19, CD20 and/or CD22 respectively in a lentiviral vector. The mono-, bi- or tri-specific CAR-T cells were tested against tumor lines expressing single, dual or triple antigens in an in vitro cytotoxicity assay. In addition, we evaluated the contribution of different CAR backbones, and possible combinations of scFv, VH or VHH to CAR design. We hypothesized that our lead tri-specific VHH CAR-T, LCAR-AIO, would potently inhibit tumors with heterogeneous Ag expression and prevent Ag escape. To validate this, we compared in vitro cytolytic activity and cytokine production of LCAR-AIO CAR-T to anti-CD19 FMC63 CAR-T against CD19 +CD20 +CD22 + Raji.Luc and CD19KOCD20 +CD22 +Raji.Luc cells . In vivo treatment efficacy and CAR-T persistence were also investigated in NCG murine model xenografted with Raji tumor line. 0.3x10 6 CAR +T cells or dose-matched untransduced T cells were given to NCG mice four days post i.v. implantation of Raji.Luc tumor cells. Tumor growth was monitored weekly by bioluminescence imaging until achieved endpoint (55 days), and CAR-T persistence was determined using genomic DNA level. Results: Tri-specific VHH CAR-T cells can mediate dose-dependent cytotoxicity against Raji tumor lines. Compared to mono- or bi-specific VHH or scFv CAR-T, tri-specific VHH CAR-T demonstrated equal or better cytolytic activity. Our lead tri-VHH CAR-T, LCAR-AIO, was able to specifically lyse K652 over-expressing single target such as CD19, CD20 or CD22, at the similar level to mono-specific CD19, CD20 or CD22 VHH CAR-T. Since no blocking effect of recognition against these three antigens was observed, our result suggested that all three VHHs in LCAR-AIO are functional. In comparison to anti-CD19 FMC63 scFv CAR-T, LCAR-AIO exhibited higher lytic activity and IFN-γ production against Raji.Luc tumor lines in vitro. In addition, LCAR-AIO retained its robust lytic activity and IFN-γ production when co-cultured with CD19KO-Raji.Luc cells while anti-CD19 FMC63 scFv CAR-T could not, suggesting LCAR-AIO may prevent tumor escape due to loss of CD19. Furthermore, comparison of LCAR-AIO to mono-scFv CAR-T (anti-CD19 FMC63-BBz, anti-CD20 Leu16-BBz or anti-CD22 m971-BBz) was performed in NCG mice xenografted with Raji cell line, LCAR-AIO exhibited better T cell expansion, longer persistence, and superior efficacy in eliminating tumors. Conclusions: Based on in vitro and in vivo preclinical data, tri-specific CD19xCD20xCD22 VHH CAR-T can be effective targeting tumors lack of CD19 expression, therefore, it has the potential of treating relapsed patients with prior CD19 CAR-T therapy. The feasibility of making tri-specific CAR-T would help to extend this technology to solid cancers where heterogeneity poses a major challenge at current stage. Figure 1 Figure 1. Disclosures Zhou: Legend Biotech: Current Employment, Current equity holder in publicly-traded company. Han: Legend Biotech: Current Employment, Current equity holder in publicly-traded company. Pan: Legend Biotech: Current Employment, Current equity holder in publicly-traded company. Sang: Legend Biotech: Current Employment, Current equity holder in publicly-traded company. Shi: Legend Biotech: Current Employment. Feng: Legend Biotech: Current Employment. Xiao: Legend Biotech: Current Employment. Zhuang: Legend Biotech: Current Employment, Current equity holder in publicly-traded company. Wang: Legend Biotech: Current Employment, Current equity holder in publicly-traded company. Fan: Legend Biotech: Current Employment, Current equity holder in publicly-traded company.


Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 4741
Author(s):  
Bettina Kotter ◽  
Fabian Engert ◽  
Winfried Krueger ◽  
Andre Roy ◽  
Wael Al Rawashdeh ◽  
...  

Chimeric antigen receptor (CAR) T cell therapy has emerged as an attractive strategy for cancer immunotherapy. Despite remarkable success for hematological malignancies, excessive activity and poor control of CAR T cells can result in severe adverse events requiring control strategies to improve safety. This work illustrates the feasibility of a zinc finger-based inducible switch system for transcriptional regulation of an anti-CD20 CAR in primary T cells providing small molecule-inducible control over therapeutic functions. We demonstrate time- and dose-dependent induction of anti-CD20 CAR expression and function with metabolites of the clinically-approved drug tamoxifen, and the absence of background CAR activity in the non-induced state. Inducible CAR T cells executed fine-tuned cytolytic activity against target cells both in vitro and in vivo, whereas CAR-related functions were lost upon drug discontinuation. This zinc finger-based transcriptional control system can be extended to other therapeutically important CARs, thus paving the way for safer cellular therapies.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A128-A128
Author(s):  
Martin Hosking ◽  
Bishwas Shrestha ◽  
Megan Boyett ◽  
Soheila Shirinbak ◽  
Angela Gentile ◽  
...  

BackgroundAlthough CAR T cells have been shown to be effective and potent in treating several hematologic malignancies, engineered T-cell therapies have had limited success in addressing solid tumors. Unlike liquid tumors where uniformly expressed antigens are accessible and can be effectively targeted, tumor access and antigen heterogeneity are a significant barrier to the successful development of CAR-T cells in solid tumors.MethodsHere we demonstrate that the combination of a bi-specific T-cell engager (BiTE) targeting EpCAM with a CAR T cell targeting HER2 enhances the in vitro and in vivo anti-tumor activity against heterogenous solid tumors.ResultsWe observed a dose-dependent enhancement of cytolytic activity when EpCAM-specific BiTEs were titrated alongside 4D5-based HER2-specific CAR T cells against HER2low tumors, enhancing maximal cytolysis by two-fold compared to CAR T cells alone (figure 1). Moreover, the escape of HER2low tumor cells in mixed heterogenous culture systems was circumvented by the combination of HER2-specific CAR T cells and EpCAM-specific BiTEs. The enhancement of efficacy was further demonstrated in an established HER2low MDA-MB-231 xenografts. HER2-specific CAR T cells were unable to contain Her2low tumors, whereas tumor growth was effectively controlled in mice receiving both EpCAM-specific BiTEs and HER2-specific CAR T cells.Abstract 116 Figure 1EpCAM specific BiTEs supplement CAR-T efficacy in vitro (A) HER2 and EpCAM expression of SKOV3, MDA-MB-231, and K562 tumor cells was assessed by flow cytometry. (B) HER2 specific CAR-T rapidly targeted and lysed HER2High SKOV3 tumor cells as measured via xCelligence RTCA assay. (C) SKOV3 were co-cultured with untransduced CD8+ T cells and the indicated concentrations of EpCAM BiTE and specific cytolysis was assessed. (D) MDA-MB-231 (HER2low) tumor cells were co-cultured with HER2 CAR-T ± EpCAM BiTE and specific cytolysis was determinedConclusionsCollectively, these data demonstrate that multi-antigen targeting mediated by BiTEs and CARs extends overall anti-tumor efficacy in preclinical models of heterogenous solid tumors. Fate Therapeutics is currently using its proprietary induced pluripotent stem cell (iPSC) product platform to generate iPSC-derived CAR T cells and iPSC-derived CAR NK cells that secrete BiTEs for the treatment of solid tumors.Ethics ApprovalThese studies were approved by Fate Therapeutics Institutional Animal Care and Use Committee and were carried out in accordance with the National Institutes of Health’s Guide for the Care and Use of Laboratory Animals.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3147-3147 ◽  
Author(s):  
Hua Zhang ◽  
Lei Gao ◽  
Li Liu ◽  
Jishi Wang ◽  
Sanbin Wang ◽  
...  

Introduction Chimeric Antigen Receptor T cells (CAR-T) therapy, e.g. B Cell Maturation Antigen (BCMA)-directed CAR-T has provided an encouraging modality for relapsed and refractory management of multiple myeloma (MM). However, a significant portion of patients still relapse with progressive disease after monospecific anti-BCMA CAR-T treatment. It has been demonstrated that CD19-directed CAR-T was effective in certain MM patients, likely due to CD19 expression on subsets of MM cells, and/or undetectable level of CD19 on MM cells. In addition, it has been reported that CD19 could express on the myeloma progenitor cells. To further improve the efficacy and to reduce relapse, we have designed a bispecific CAR-T targeting both BCMA and CD19. In addition to the conventionally-manufactured BCMA-CD19 CAR-T, the bispecific CAR-T was also successfully manufactured in our newly developed FasT CAR-T platform, which shortened the production time to one day. Here we report the results from pre-clinical studies and early results from the first-in-human clinical study. Methods The BCMA-CD19 bispecific CAR was constructed by linking BCMA and CD19 scFv, joined by a CD8 hinge, transmembrane domain, co-stimulatory domain and CD3. CAR-T cells were produced using either the conventional process (GC012) or the FasT CAR-T platform (GC012F). Peripheral blood (PB) mononuclear cells were obtained by leukapheresis either from healthy donors for the pre-clinical study or from patients for the clinical trial. T cells were isolated and used for CAR-T manufacturing. A xenograft mouse model was used to determine the efficacy in vivo. From March 2019 to July 2019, 5 adult relapsed/refractory MM patients (Age 50-59), who had previously received multiple lines of therapies, were enrolled (Table). Among them, 2 had extramedullary diseases. One patient did not receive lymphodepletion, and all other 4 patients received i.v. fludarabine and cyclophosphamide for 3 days. All patients received a single infusion of CAR-T cells, either at dose 1x106/Kg (DL1) (2 patients) or at dose 2x106/Kg (DL2) (3 patients), and the dose escalation is still ongoing. The endpoints of the exploratory trial were to evaluate the safety, feasibility, PK, and clinical efficacy of BCMA-CD19 bispecific CAR-T. Results In pre-clinical study, BCMA-CD19 bispecific CAR-T were very effective in killing CD19+ and/or BCMA + target cells including MM cell lines RPMI8226 and MM.1s (Fig 1). Increased IFN production and CD107a up-regulation were also observed. We demonstrated that BCMA-CD19 CAR-T completely eliminated BCMA+ MM cell line RPMI8226, MM.1s, and CD19+ ALL cell line Nalm6 in in vivo xenograft models. Additionally BCMA-CD19 CAR-T cells were shown to be more cytotoxic than single CAR-T both in vitro and in vivo. BCMA-CD19 CAR-T manufactured in the FasT CAR-T platform was more effective in eliminating MM in a xenograft model (Fig. 1). In the clinical study, the median observation time was 68 days (27-144 days up to 2019/7/30). Five patients were evaluated between 15-59 days post CAR-T infusion. Despite the relatively short disease evaluation time, all 5 patients responded to the treatment: 1 patient achieved sCR, 3 achieved VGPR and 1 achieved PR. Notably, although patient KM001 did not receive any pre-conditioning, however, the patient achieved sCR status on Day 15 and has maintained sCR up to now (129 days). CAR-T PK in the PB was monitored by qPCR and flow cytometry. The CAR-T proliferation peak was reached on Day 10 (D7-D14), and the median peak copy number was 34,039 (12,897-128,775) copies /ug DNA (Fig. 2). Remarkably, despite the encouraging clinical response to the CAR-T treatment, no severe adverse events were encountered during the observation period. Three patients experienced only grade 1 cytokine release syndrome (CRS) and no subject suffered from neurotoxicity of any level (Table). Conclusion Pre-clinical data demonstrated BCMA-CD19 CAR-T cells are effective in eliminating MM tumor cells both in vitro and in vivo. The first-in-human clinical trial also showed extraordinary safety profile and efficacy of BCMA-CD19 bispecific CAR-T in treating R/R MM. The long-term benefit and effect on relapse are being further studied. Bispecific CAR-T manufacturing on the FasT CAR-T platform is successful and has been shown to be more potent. A clinical study to evaluate safety and efficacy of FasT BCMA-CD19 CAR-T is ongoing. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4804-4804
Author(s):  
Eider F. Moreno Cortes ◽  
Juan Esteban Garcia Robledo ◽  
Natalie Booth ◽  
Jose V. Forero ◽  
Januario E Castro

Abstract Background: Chimeric Antigen Receptor (CAR) T cell therapy is arguably one of the most significant breakthroughs in cancer treatment. There are currently five FDA-approved products that are commercially available. However, despite their success, these CAR T-cell therapies cannot induce long-term durable responses in approximately 50% of leukemia or lymphoma-treated patients. Similarly, the results of CAR T-cells in solid tumors have been somewhat disappointing. Therefore, there is an urgent need to design and develop novel CAR T cells with improved efficacy in hematologic malignancies and solid tumors. ROR1 is a carcinoembryonic antigen expressed in different cancers and is associated with tumor stemness, proliferation, metastatic transformation, and treatment resistance. In this project, we optimize an anti-ROR1 CAR using a humanized single-chain variable fragment (scFv) with second (2G) or third-generation (3G) costimulatory domains. Methods: Several optimization steps in silico were performed using a selected scFv binding domain that targets ROR1. Those included codon optimizations, positional arrangement of heavy-light chains, evaluation of the ideal length of linkers based on tridimensional modeling of the docking between the antibody-like paratope with the target antigen (Figure 1A). After this initial scFv optimization process, we constructed a lentiviral vector that encodes CARs using the selected scFv linked to a transmembrane domain CD28 and different signaling endodomains for 2G and 3G variants (CD28, 41BB, ICOS, OX40), each linked to the T cell receptor CD3z domain. The cytotoxic activity of these constructs was evaluated using an in vitro rechallenge luciferase assay in ROR1 expressing JeKo-1 cells and ROR1(negative) controls. Results: The 2G 41BB-z construct with V H-V L scFv orientation and a long linker (V H-L-V L) showed optimal cytotoxicity with a CAR expression level in T cells of 36% (Range 28-49% for other constructs, Figure 1B-C). The V H-L-V L 41BB-z construct was evaluated comparatively using a rechallenge cytotoxic assay with 3G constructs that expressed CD28, ICOS, or OX40 signaling domains using JeKo-1 and ROR1(negative) target cells as controls. All the tested constructs showed specific ROR1 medicated cytotoxicity. CD28-41BB-z and ICOS-41BB-z showed the lowest cytotoxicity levels during the Day 1 of the repetitive rechallenge. However, the cytotoxicity levels of those constructs gradually increased during the 7 days of rechallenge and were closed to the levels induced by the 2G- 41BB-z construct (>80% of cytotoxicity). There were no significant differences in CAR T cells subsets generated by the different constructs during the 7 days of rechallenge with a predominance of effector memory phenotype (CCR7-, CD45RA-) and no difference in PD1 expression. Conclusions: Our results demonstrate that optimization of the CAR constructs enhances T-cell effector function and cytotoxicity against ROR1+ target cells. In previous studies, 3G CARs have shown longer persistence of the transduced T cells in peripheral blood, sustained and regulated cellular activation, improved solid tumor infiltration, and positive modulation of the tumor microenvironment. Our preclinical in vitro optimization demonstrates strategies to generate 3G constructs with a progressive and modulated cytotoxic profile that may confer benefits when tested in vivo in terms of enhanced persistence and lower adverse events profile. Additional experiments in vivo will be presented during the meeting to corroborate our findings. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A109-A109
Author(s):  
Jiangyue Liu ◽  
Xianhui Chen ◽  
Jason Karlen ◽  
Alfonso Brito ◽  
Tiffany Jheng ◽  
...  

BackgroundMesothelin (MSLN) is a glycosylphosphatidylinositol (GPI)-anchored membrane protein with high expression levels in an array of malignancies including mesothelioma, ovaria, non-small cell lung cancer, and pancreatic cancers and is an attractive target antigen for immune-based therapies. Early clinical evaluation of autologous MSLN-targeted chimeric antigen receptor (CAR)-T cell therapies for malignant pleural mesothelioma has shown promising acceptable safety1 and have recently evolved with incorporation of next-generation CAR co-stimulatory domains and armoring with intrinsic checkpoint inhibition via expression of a PD-1 dominant negative receptor (PD1DNR).2 Despite the promise that MSLN CAR-T therapies hold, manufacturing and commercial challenges using an autologous approach may prove difficult for widespread application. EBV T cells represent a unique, non-gene edited approach toward an off-the-shelf, allogeneic T cell platform. EBV-specific T cells are currently being evaluated in phase 3 trials [NCT03394365] and, to-date, have demonstrated a favorable safety profile including limited risks for GvHD and cytokine release syndrome.3 4 Clinical proof-of-principle studies for CAR transduced allogeneic EBV T cell therapies have also been associated with acceptable safety and durable response in association with CD19 targeting.5 Here we describe the first preclinical evaluation of ATA3271, a next-generation allogeneic CAR EBV T cell therapy targeting MSLN and incorporating PD1DNR, designed for the treatment of solid tumor indications.MethodsWe generated allogeneic MSLN CAR+ EBV T cells (ATA3271) using retroviral transduction of EBV T cells. ATA3271 includes a novel 1XX CAR signaling domain, previously associated with improved signaling and decreased CAR-mediated exhaustion. It is also armored with PD1DNR to provide intrinsic checkpoint blockade and is designed to retain functional persistence.ResultsIn this study, we characterized ATA3271 both in vitro and in vivo. ATA3271 show stable and proportional CAR and PD1DNR expression. Functional studies show potent antitumor activity of ATA3271 against MSLN-expressing cell lines, including PD-L1-high expressors. In an orthotopic mouse model of pleural mesothelioma, ATA3271 demonstrates potent antitumor activity and significant survival benefit (100% survival exceeding 50 days vs. 25 day median for control), without evident toxicities. ATA3271 maintains persistence and retains central memory phenotype in vivo through end-of-study. Additionally, ATA3271 retains endogenous EBV TCR function and reduced allotoxicity in the context of HLA mismatched targets. ConclusionsOverall, ATA3271 shows potent anti-tumor activity without evidence of allotoxicity, both in vitro and in vivo, suggesting that allogeneic MSLN-CAR-engineered EBV T cells are a promising approach for the treatment of MSLN-positive cancers and warrant further clinical investigation.ReferencesAdusumilli PS, Zauderer MG, Rusch VW, et al. Abstract CT036: A phase I clinical trial of malignant pleural disease treated with regionally delivered autologous mesothelin-targeted CAR T cells: Safety and efficacy. Cancer Research 2019;79:CT036-CT036.Kiesgen S, Linot C, Quach HT, et al. Abstract LB-378: Regional delivery of clinical-grade mesothelin-targeted CAR T cells with cell-intrinsic PD-1 checkpoint blockade: Translation to a phase I trial. Cancer Research 2020;80:LB-378-LB-378.Prockop S, Doubrovina E, Suser S, et al. Off-the-shelf EBV-specific T cell immunotherapy for rituximab-refractory EBV-associated lymphoma following transplantation. J Clin Invest 2020;130:733–747.Prockop S, Hiremath M, Ye W, et al. A Multicenter, Open Label, Phase 3 Study of Tabelecleucel for Solid Organ Transplant Subjects with Epstein-Barr Virus-Driven Post-Transplant Lymphoproliferative Disease (EBV+PTLD) after Failure of Rituximab or Rituximab and Chemotherapy. Blood 2019; 134: 5326–5326.Curran KJ, Sauter CS, Kernan NA, et al. Durable remission following ‘Off-the-Shelf’ chimeric antigen receptor (CAR) T-Cells in patients with relapse/refractory (R/R) B-Cell malignancies. Biology of Blood and Marrow Transplantation 2020;26:S89.


Sign in / Sign up

Export Citation Format

Share Document